Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (11): 1157-1162    DOI: 10.16511/j.cnki.qhdxxb.2015.21.006
  自动化 本期目录 | 过刊浏览 | 高级检索 |
在线社会网络多话题传播竞争特性的测量
孙立远1,2, 管晓宏1,3
1. 清华大学自动化系, 智能与网络化系统研究中心, 北京 100084;
2. 国家计算机网络应急技术处理协调中心, 北京 100029;
3. 西安交通大学智能网络与网络安全教育部重点实验室, 西安 710049
Measurements of the competitive characteristics of multi-topic propagation in online social networks
SUN Liyuan1,2, GUAN Xiaohong1,3
1. Center for Intelligent and Networked Systems, Department of Automation, Tsinghua University, Beijing 100084, China;
2. National Computer Network Emergency Response Technical Team/Coordination Center, Beijing 100029, China;
3. MOE Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(1822 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 网络上的话题纷杂多样而人们的注意力有限,势必导致多话题之间竞争稀缺的用户注意力资源,这种竞争关系影响了网络话题的传播和舆情的形成。已有的研究大多只针对单一话题的传播,该文研究了在线社会网络上多话题竞争的传播规律,提出多话题传播竞争特性的测量方法。从话题和用户这2个层面设计了话题竞争的资源数变化规律、话题竞争激烈程度、用户注意力的转移规律及话题相关性等的测量方法,提出了话题资源数波动率、话题竞争激烈度和用户注意力转移率等定量测量指标。通过对新浪微博真实数据的测量发现:多话题竞争中用户资源总数基本稳定,用户的注意力大部分是从老话题转移到新出现的话题且发生在同类话题间。这些测量结果为建立多话题传播模型提供了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙立远
管晓宏
关键词 在线社会网络多话题传播话题竞争用户行为    
Abstract:Online social networks have many topics but people's attention spans are very limited, so the many topics compete for the scarce user attention spans. This competitive relationship affects the propagation of information and the formation of public opinions. Most existing research has focused on the spread of individual topics. This study investigates the spread of multiple topics and methods to quantitatively describe the competitive characteristics. Topic and user level methods are developed to measure resource changes, topic competition intensity, user attention transitions and topic relevance. Metrics are developed for the resource variation rate and the user attention transition rate. Measurements of the actual data collected from Sina Weibo show that the total user attention level is almost stable with most user attention transitions moving from existing topics to newly appearing topics and between similar topics. These measurements provide modeling of the multi-topic propagation processes.
Key wordsonline social networks    multi-topic propagation    topic competition    user behavior
收稿日期: 2015-06-15      出版日期: 2015-12-01
ZTFLH:  TP393.0  
通讯作者: 管晓宏,教授,E-mail:xhguan@tsinghua.edu.cn     E-mail: xhguan@tsinghua.edu.cn
引用本文:   
孙立远, 管晓宏. 在线社会网络多话题传播竞争特性的测量[J]. 清华大学学报(自然科学版), 2015, 55(11): 1157-1162.
SUN Liyuan, GUAN Xiaohong. Measurements of the competitive characteristics of multi-topic propagation in online social networks. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1157-1162.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.21.006  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I11/1157
  表1 新浪微博数据集概况
  表2 话题类别概况
  图1 新浪微博2013年3月热门话题的传播趋势
  图2 新浪微博2013年3月用户资源总数的变化趋势
  图3 话题竞争的激烈程度
  图4 用户注意力转移率的CCDF分布
  图5 用户注意力在话题间的转移率分布
[1] Weng L, Flammini A, Vespignani A, et al. Competition among memes in a world with limited attention[J]. Scientific Reports, 2012, 2:335-343.
[2] Myers S A, Leskovec J. Clash of the contagions:Cooperation and competition in information diffusion[C]//Proceedings of the 12th IEEE International Conference on Data Mining. Brussels, Belgium:IEEE press, 2012:539-548.
[3] Huberman B A, Romero D M, Wu F. Social networks that matter:Twitter under the microscope[J]. First Monday, 2009, 14(1):47-61.
[4] Kwak H, Lee C, Park H, et al. What is Twitter, a social network or a news media[C]//Proceedings of the 19th International Conference on World Wide Web. New York, NY, USA:ACM press, 2010:591-600.
[5] Golder S A, Wilkinson D M, Huberman A. Rhythms of social interaction:Messaging within a massive online network[C]//Proceedings of the 3rd International Conference on Communities and Technologies. London, UK:Springer, 2007:41-66.
[6] Mislove A E. Online Social Networks:Measurement, Analysis, and Applications to Distributed Information Systems[D]. Houston, TX, USA:Rice University, 2009.
[7] 刘玮, 王丽宏, 李锐光. 面向话题的微博网络测量研究[J]. 通信学报, 2013, 34(11):171-178.LIU Wei, WANG Lihong, LI Ruiguang. Topic-oriented measurement of microblogging network[J].Journal on Communicaitons, 2013, 34(11):171-178.(in Chinese)
[8] 周亚东. 在线社会网络热点话题识别与动态传播建模与分析研究[D]. 西安:西安交通大学, 2011.ZHOU Yadong. Modeling and Analysis for Topic Detection and Group Dynamics over Online Social Networks[D]. Xi'an:Xi'an Jiaotong University, 2011.(in Chinese)
[9] Leskovec J, Backstrom L et al. Meme-tracking and the dynamics of the news cycle[C]//Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining. Paris, France:ACM press, 2009:497-506.
[10] Yang J, Leskovec J. Patterns of temporal variation in online media[C]//Proceedings of the 4th ACM International Coference on Web Search and Data Mining. Hongkong, China:ACM press, 2011:177-186.
[11] Bakshy E, Rosenn I, Marlow C, et al. The role of social networks in information diffusion[C]//Proceedings of the 21st International Conference on World Wide Web. Lyon, France:ACM press, 2012:519-528.
[12] Gonçalves B, Perra N, Vespignani A. Modeling users' activity on twitter networks:Validation of dunbar's number[J]. PLoS One, 2011, 6(8), e22656.
[13] Xu P, Wu Y, Wei E, etc. Visual analysis of topic competition on social media[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12):2012-2021.
[14] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[1] 赵宇, 黄开枝, 郭云飞, 赵星. 在线社会网络中面向节点影响力的信息传播阻断模型[J]. 清华大学学报(自然科学版), 2017, 57(12): 1245-1253.
[2] 朱涵钰, 吴联仁, 吕廷杰. 社交网络用户隐私量化研究: 建模与实证分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 402-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn