Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (11): 1241-1245,1252    DOI: 10.16511/j.cnki.qhdxxb.2015.21.013
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
移动通信系统平均物理层安全容量
李涛1, 张焱2, 许希斌3, 周世东1,3
1. 清华大学电子工程系, 微波与数字通信国家重点实验室, 北京 100084;
2. 北京理工大学信息与电子学院, 北京 100081;
3. 清华大学信息科学与技术国家实验室, 北京 100084
Mean physical-layer secrecy capacity in mobile communication systems
LI Tao1, ZHANG Yan2, XU Xibin3, ZHOU Shidong1,3
1. State Key Lab on Microwave and Digital Communications, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
3. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1540 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为提升移动通信系统的安全性,研究了用户移动时的平均物理层安全容量。在实际传播环境中,用户移动会导致物理层安全容量在大范围内变化,因此提出合法用户平均物理层安全容量以刻画系统的安全通信性能。通过分析窃听者位置对平均物理层安全容量的影响,得到了平均物理层安全容量的分布特征。根据分布特征,提出了一种改善平均物理层安全容量的方案。该方案通过限制窃听者存在区域,保证用户平均物理层安全容量不低于指定值。理论和数值分析结果表明:所提方案可以有效地保障移动通信系统的平均物理层安全容量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李涛
张焱
许希斌
周世东
关键词 移动通信物理层安全平均物理层安全容量    
Abstract:The security of mobile communication systems depends on the mean physical-layer secrecy capacity as the user moves. In realistic propagation environments, the physical-layer secrecy capacity varies over a vast range because of the user motion. A mean physical-layer secrecy capacity of a legitimate user is defined to characterize the secure communication performance of the system. The distribution characteristics of the mean physical-layer secrecy capacity are derived based on the impact of the eavesdropper's position on the mean physical-layer secrecy capacity. A scheme is then given to improve the mean physical-layer secrecy capacity according to the distribution characteristics. The mean physical-layer secrecy capacity can be made to be not lower than a specified value by limiting the eavesdropper's positions. Theoretical and numerical results demonstrate that this scheme can effectively guarantee the mean physical-layer secrecy capacity in mobile communication systems.
Key wordsmobile communication    physical-layer security    mean physical-layer secrecy capacity
收稿日期: 2015-03-06      出版日期: 2015-12-01
ZTFLH:  TP929.5  
通讯作者: 周世东,教授,E-mail:zhousd@tsinghua.edu.cn     E-mail: zhousd@tsinghua.edu.cn
引用本文:   
李涛, 张焱, 许希斌, 周世东. 移动通信系统平均物理层安全容量[J]. 清华大学学报(自然科学版), 2015, 55(11): 1241-1245,1252.
LI Tao, ZHANG Yan, XU Xibin, ZHOU Shidong. Mean physical-layer secrecy capacity in mobile communication systems. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1241-1245,1252.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.21.013  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I11/1241
  图1 单蜂窝小区示意图
  图2 上行信道中用户安全容量的中断概率
  图3 用户在某个扇区等概分布,下行信道的平均物理层安全容量随窃听者位置的变化
  图4 用户在某个扇区等概分布,上行信道的平均物理层安全容量随窃听者位置的变化
[1] Massey J L. An introduction to contemporary cryptology[J]. Proceedings of the IEEE, 1988, 76(5):533-549.
[2] Schneier B. Cryptographic design vulnerabilities[J]. Computer, 1998, 31(9):29-33.
[3] Shannon C E. Communication theory of secrecy systems[J]. Bell system technical journal, 1949, 28(4):656-715.
[4] Wyner A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8):1355-1387.
[5] Leung-Yan-Cheong S, Hellman M E. The Gaussian wire-tap channel[J]. Information Theory, IEEE Transactions on, 1978, 24(4):451-456.
[6] Csiszár I, Korner J. Broadcast channels with confidential messages[J]. Information Theory, IEEE Transactions on, 1978, 24(3):339-348.
[7] Li Z, Yates R, Trappe W. Secret communication with a fading eavesdropper channel[C]//Information Theory, 2007. ISIT 2007. IEEE International Symposium on. Nice, Alpes-Maritimes, France:IEEE Press, 2007:1296-1300.
[8] Li Z, Yates R, Trappe W. Secrecy capacity of independent parallel channels. Proceedings of Proc. 44th Annu. Allerton Conf., Allerton House, Illinois, 2006. 841-848.
[9] Hero A O. Secure space-time communication[J]. Information Theory, IEEE Transactions on, 2003, 49(12):3235-3249.
[10] Pei Y, Liang Y C, Teh K C, et al. Secure communication in multiantenna cognitive radio networks with imperfect channel state information[J]. Signal Processing, IEEE Transactions on, 2011, 59(4):1683-1693.
[11] Negi R, Goel S. Secret communication using artificial noise[C]//IEEE Vehicular Technology Conference. Dallas, TX, USA:IEEE Press, 1999, 2005, 62(3):1906.
[12] Dong L, Han Z, Petropulu A P, et al. Improving wireless physical layer security via cooperating relays[J]. Signal Processing, IEEE Transactions on, 2010, 58(3):1875-1888.
[13] Jeong C, Kim I M, Kim D I. Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system[J]. Signal Processing, IEEE Transactions on, 2012, 60(1):310-325.
[14] Liu R, Maric I, Spasojevic P, et al. Discrete memoryless interference and broadcast channels with confidential messages:Secrecy rate regions[J]. Information Theory, IEEE Transactions on, 2008, 54(6):2493-2507.
[15] Bagherikaram G, Motahari A S, Khandani A K. The secrecy capacity region of the Gaussian MIMO broadcast channel[J]. Information Theory, IEEE Transactions on, 2013, 59(5):2673-2682.
[16] Ekrem E, Ulukus S. The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel[J]. Information Theory, IEEE Transactions on, 2011, 57(4):2083-2114.
[17] Liang Y, Poor H V. Multiple-access channels with confidential messages[J]. Information Theory, IEEE Transactions on, 2008, 54(3):976-1002.
[18] Tekin E, Yener A. The Gaussian multiple access wire-tap channel[J]. Information Theory, IEEE Transactions on, 2008, 54(12):5747-5755.
[19] Lai L, El Gamal H. The relay-eavesdropper channel:Cooperation for secrecy[J]. Information Theory, IEEE Transactions on, 2008, 54(9):4005-4019.
[20] Marina N, Bose R, Hjorungnes A. Increasing the secrecy capacity by cooperation in wireless networks[C]//Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on. Tokyo, Japan:IEEE Press, 2009:1978-1982.
[21] Marina N, Hjorungnes A. Characterization of the secrecy region of a single relay cooperative system[C]//Wireless Communications and Networking Conference(WCNC), 2010 IEEE. Sydney, Australia:IEEE Press, 2010:1-6.
[22] Li W, Ghogho M, Chen B, et al. Secure communication via sending artificial noise by the receiver:outage secrecy capacity/region analysis[J]. Communications Letters, IEEE, 2012, 16(10):1628-1631.
[1] 周世东, 杨志, 肖立民. 基于用户位置变化的密钥生成速率[J]. 清华大学学报(自然科学版), 2017, 57(8): 862-866.
[2] 王璟, 王燕敏, 冯伟, 肖立民, 周世东. 多小区分布式天线系统高能效协同传输方案[J]. 清华大学学报(自然科学版), 2017, 57(1): 67-71.
[3] 王璟, 王燕敏, 冯伟, 肖立民, 周世东. 分布式天线系统中基于大尺度信道信息的功耗优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 696-699,706.
[4] 赵俊韬, 冯伟, 赵明, 王京. 频谱共享系统中基于大尺度信道状态信息的资源优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 692-695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn