Mean physical-layer secrecy capacity in mobile communication systems
LI Tao1, ZHANG Yan2, XU Xibin3, ZHOU Shidong1,3
1. State Key Lab on Microwave and Digital Communications, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
3. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
Abstract:The security of mobile communication systems depends on the mean physical-layer secrecy capacity as the user moves. In realistic propagation environments, the physical-layer secrecy capacity varies over a vast range because of the user motion. A mean physical-layer secrecy capacity of a legitimate user is defined to characterize the secure communication performance of the system. The distribution characteristics of the mean physical-layer secrecy capacity are derived based on the impact of the eavesdropper's position on the mean physical-layer secrecy capacity. A scheme is then given to improve the mean physical-layer secrecy capacity according to the distribution characteristics. The mean physical-layer secrecy capacity can be made to be not lower than a specified value by limiting the eavesdropper's positions. Theoretical and numerical results demonstrate that this scheme can effectively guarantee the mean physical-layer secrecy capacity in mobile communication systems.
李涛, 张焱, 许希斌, 周世东. 移动通信系统平均物理层安全容量[J]. 清华大学学报(自然科学版), 2015, 55(11): 1241-1245,1252.
LI Tao, ZHANG Yan, XU Xibin, ZHOU Shidong. Mean physical-layer secrecy capacity in mobile communication systems. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1241-1245,1252.
[1] Massey J L. An introduction to contemporary cryptology[J]. Proceedings of the IEEE, 1988, 76(5):533-549.
[2] Schneier B. Cryptographic design vulnerabilities[J]. Computer, 1998, 31(9):29-33.
[3] Shannon C E. Communication theory of secrecy systems[J]. Bell system technical journal, 1949, 28(4):656-715.
[4] Wyner A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8):1355-1387.
[5] Leung-Yan-Cheong S, Hellman M E. The Gaussian wire-tap channel[J]. Information Theory, IEEE Transactions on, 1978, 24(4):451-456.
[6] Csiszár I, Korner J. Broadcast channels with confidential messages[J]. Information Theory, IEEE Transactions on, 1978, 24(3):339-348.
[7] Li Z, Yates R, Trappe W. Secret communication with a fading eavesdropper channel[C]//Information Theory, 2007. ISIT 2007. IEEE International Symposium on. Nice, Alpes-Maritimes, France:IEEE Press, 2007:1296-1300.
[8] Li Z, Yates R, Trappe W. Secrecy capacity of independent parallel channels. Proceedings of Proc. 44th Annu. Allerton Conf., Allerton House, Illinois, 2006. 841-848.
[9] Hero A O. Secure space-time communication[J]. Information Theory, IEEE Transactions on, 2003, 49(12):3235-3249.
[10] Pei Y, Liang Y C, Teh K C, et al. Secure communication in multiantenna cognitive radio networks with imperfect channel state information[J]. Signal Processing, IEEE Transactions on, 2011, 59(4):1683-1693.
[11] Negi R, Goel S. Secret communication using artificial noise[C]//IEEE Vehicular Technology Conference. Dallas, TX, USA:IEEE Press, 1999, 2005, 62(3):1906.
[12] Dong L, Han Z, Petropulu A P, et al. Improving wireless physical layer security via cooperating relays[J]. Signal Processing, IEEE Transactions on, 2010, 58(3):1875-1888.
[13] Jeong C, Kim I M, Kim D I. Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system[J]. Signal Processing, IEEE Transactions on, 2012, 60(1):310-325.
[14] Liu R, Maric I, Spasojevic P, et al. Discrete memoryless interference and broadcast channels with confidential messages:Secrecy rate regions[J]. Information Theory, IEEE Transactions on, 2008, 54(6):2493-2507.
[15] Bagherikaram G, Motahari A S, Khandani A K. The secrecy capacity region of the Gaussian MIMO broadcast channel[J]. Information Theory, IEEE Transactions on, 2013, 59(5):2673-2682.
[16] Ekrem E, Ulukus S. The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel[J]. Information Theory, IEEE Transactions on, 2011, 57(4):2083-2114.
[17] Liang Y, Poor H V. Multiple-access channels with confidential messages[J]. Information Theory, IEEE Transactions on, 2008, 54(3):976-1002.
[18] Tekin E, Yener A. The Gaussian multiple access wire-tap channel[J]. Information Theory, IEEE Transactions on, 2008, 54(12):5747-5755.
[19] Lai L, El Gamal H. The relay-eavesdropper channel:Cooperation for secrecy[J]. Information Theory, IEEE Transactions on, 2008, 54(9):4005-4019.
[20] Marina N, Bose R, Hjorungnes A. Increasing the secrecy capacity by cooperation in wireless networks[C]//Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on. Tokyo, Japan:IEEE Press, 2009:1978-1982.
[21] Marina N, Hjorungnes A. Characterization of the secrecy region of a single relay cooperative system[C]//Wireless Communications and Networking Conference(WCNC), 2010 IEEE. Sydney, Australia:IEEE Press, 2010:1-6.
[22] Li W, Ghogho M, Chen B, et al. Secure communication via sending artificial noise by the receiver:outage secrecy capacity/region analysis[J]. Communications Letters, IEEE, 2012, 16(10):1628-1631.