Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (10): 1098-1104    DOI: 10.16511/j.cnki.qhdxxb.2015.22.006
  热能工程 本期目录 | 过刊浏览 | 高级检索 |
气流床煤加氢气化反应器的数值模拟及流场特性分析
管清亮, 毕大鹏, 吴玉新, 张建胜
清华大学 热能工程系, 热科学与动力工程教育部重点实验室, 北京 100084
Numerical simulation of the flow field characteristics in an entrained flow coal hydrogasifier
GUAN Qingliang, BI Dapeng, WU Yuxin, ZHANG Jiansheng
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1536 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文通过对Rockwell公司开发的6 t/d的气流床煤加氢气化反应器的3维数值模拟, 模拟了加氢气化反应器内的流场和反应过程。模拟采用了Johnson和Tran的加氢热解动力学模型, 并且考虑了焦油的加氢裂解反应。数值模拟预测结果和6 t/d加氢气化反应器的实验结果符合得较好。模拟结果表明: 加氢气化反应器内的流场可以分为交叉撞击区、射流-回流区和管流区3个区域。一次脱挥发分反应在煤粉和炽热氢气快速混合后的很短时间内就能完成, 甲烷主要在交叉撞击区和射流-回流区生成, 加氢气化反应器下部大部分区域为管流区。在交叉撞击区及射流-回流区, 颗粒粒径越小则颗粒升温及失去质量越早; 在管流区, 颗粒粒径对颗粒的质量变化及温度历程影响不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
管清亮
毕大鹏
吴玉新
张建胜
关键词 气化方法煤加氢气化数值模拟气流床    
Abstract:The flow field and reaction processes in a coal hydrogasifier reactor were modeled using a three-dimensional numerical model of Rockwell's 6 t/d entrained flow coal hydrogasifier using the hydropyrolysis kinetic model developed by Johnson and Tran as well as tar hydrocracking reactions. The numerical predictions were in good agreement with experimental results for the 6 t/d hydrogasifier. The simulations show that the flow field in the hydrogasifier can be categorized into a cross-flow impinging region, a jet-reflux flow region, and a plug flow region. The primary devolatilization reactions are complete immediately after the rapid mixing of the hot hydrogen and coal particles. The methane is mainly produced in the cross-flow impinging region and jet-reflux region. Most of the lower hydrogasifier has plug flow. Small particles are heated and lose weight faster in the cross-flow impinging region and jet-reflux flow region, while in the plug flow region, the particle size has minor effect on the particle temperature and mass history.
Key wordsgasification method    coal hydrogasification    numerical simulation    entrained flow
收稿日期: 2014-04-11      出版日期: 2015-11-16
ZTFLH:  TQ546.2  
基金资助:国家“八六三”高技术项目(2011AA05A201)
通讯作者: 张建胜,教授,E-mail:zhang-jsh@tsinghua.edu.cn     E-mail: zhang-jsh@tsinghua.edu.cn
作者简介: 管清亮(1988-),男(汉),江西,博士研究生。
引用本文:   
管清亮, 毕大鹏, 吴玉新, 张建胜. 气流床煤加氢气化反应器的数值模拟及流场特性分析[J]. 清华大学学报(自然科学版), 2015, 55(10): 1098-1104.
GUAN Qingliang, BI Dapeng, WU Yuxin, ZHANG Jiansheng. Numerical simulation of the flow field characteristics in an entrained flow coal hydrogasifier. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1098-1104.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.22.006  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I10/1098
  图1 Rockwell加氢气化反应器结构简图
  表1 Rockwell加氢气化反应器运行参数
  图2 网格划分及边界条件
  表2 焦炭异相反应动力学参数
  表3 气相反应的化学反应速率(R=8.314J·mol-1·K-1)
  图3 转化率及出口温度数值模拟与实验结果[3]对比
  图4 工况3加氢气化反应器上部0.5m 流场
  图5 工况3加氢气化反应器不同截面上径向温度分布
  图6 工况3加氢气化反应器截面平均碳转化率随反应器高度分布(线:数值模拟;点:实验数据[3])
  图7 工况3的CH4 源项分布图
  图8 工况3典型颗粒的质量变化及温度变化曲线
[1] Zhang A, Kaiho A, Yasuda H, et al. Fundamental studies on hydrogasification of Taiheiyo coal [J]. Energy, 2005, 30(11/12): 2243-2250.
[2] Friedman J. Development of a Single-Stage, Entrained-Flow, Short-Residence-Time Hydrogasifier [R]. FE-2518-24. Canoga Park, CA, USA: Rockwell International, 1979.
[3] Johnson J L, Tran D Q. Kinetics of Devolatilization and Rapid-Rate Methane Formation [R]. GRI-78/0049. Chicago, IL, USA: Institute of Gas Technology, 1980.
[4] Kalinenko R A, Levitskii A A, Polak L S, et al. Calculation and theoretical investigation of processes occurring in the pyrolysis and hydropyrolysis of coal [J]. Kinetics and Catalysis, 1985, 26(6): 1149-1156.
[5] Sprouse K M. Modeling pulverized coal conversion in entrained flows [J]. AIChE Journal, 1980, 26(6): 964-975.
[6] Goyal A, Gidaspow D. Modeling of entrained flow coal hydropyrolysis reactors. 1: Mathematical formulation and experimental-verification [J]. Industrial & Engineering Chemistry Process Design and Development, 1982, 21(4): 611-624.
[7] Goyal A, Gidaspow D. Modeling of entrained flow coal hydropyrolysis reactors. 2: Reactor design [J]. Industrial & Engineering Chemistry Process Design and Development, 1982, 21(4): 625-632.
[8] Asaoka Y, Azuma T, Kawamoto M, et al. Development of coal hydrogasification technology. 3: Simulation incorporated the hydro-pyrolysis model into computational fluid dynamics [C]// 17th Annual International Pittsburgh Coal Conference. Pittsburgh, PA, USA, 2000.
[9] YAN Linbo, HE Boshu, PEI Xiaohui, et al. Kinetic models for coal hydrogasification and analyses of hydrogasification characteristics in entrained-flow gasifiers [J]. Energy & Fuels, 2013, 27 (11): 6388-6396.
[10] YAN Linbo, HE Boshu, PEI Xiaohui, et al. Computational-fluid-dynamics-based evaluation and optimization of an entrained-flow gasifier potential for coal hydrogasification [J]. Energy & Fuels, 2013, 27(11): 6397-6407.
[11] Grant D M, Pugmire R J, Fletcher T H, et al. Chemical model of coal devolatilization using percolation lattice statistics [J]. Energy & Fuels, 1989, 3(2): 175-186.
[12] Tomita A, Mahajan O P, Walker Jr P L. Reactivity of heat-treated coals in hydrogen [J]. Fuel, 1977, 56(2): 137-144.
[13] Watanabe H, Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier [J]. Fuel, 2006, 85(12/13): 1935-1943.
[14] Suuberg E M, Peters W A, Howard J B. Product composition and kinetics of lignite pyrolysis [J]. Industrial & Engineering Chemistry Process Design and Development, 1978, 17(1): 37-46.
[15] Greene M I. Engineering development of a short residence time, coal hydropyrolysis process [J]. Fuel Processing Technology, 1978, 1(3): 169-185.
[16] Magnussen B F, Hjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion [J]. Symposium (International) on Combustion, 1977, 16(1): 719-729.
[17] Graber W D, Huttinger K J. Chemistry of methane formation in hydrogasification of aromatics. 1: Non-substituted aromatics [J]. Fuel, 1982, 61(6): 499-504.
[18] Graber W D, Huttinger K J. Chemistry of methane formation in hydrogasification of aromatics. 2: Aromatics with aliphatic groups [J]. Fuel, 1982, 61(6): 505-509.
[19] Serio M A, Peters W A, Howard J B. Kinetics of vapor-phase secondary reactions of prompt coal pyrolysis tars [J]. Industrial & Engineering Chemistry Research, 1987, 26(9): 1831-1838.
[20] Virk P S, Chambers L E, Woebcke H N. Thermal Hydrogasification of Aromatic Compounds [M]. Massey L G, ed. Coal Gasification. Washington, DC: American Chemical Society, 1974: 237-258.
[21] SUN Zhonghua, DAI Zhenghua, ZHOU Zhijie, et al. Numerical simulation of industrial opposed multiburner coal-water slurry entrained flow gasifier [J]. Industrial & Engineering Chemistry Research, 2012, 51(6): 2560-2569.
[1] 杨明祥, 王浩, 蒋云钟, 雷晓辉, 宋健蛟. 基于数值模拟的雅砻江流域风能资源初步评估[J]. 清华大学学报(自然科学版), 2018, 58(1): 101-107.
[2] 王岩, 黄弘, 黄丽达, 李云涛. 土壤大气耦合的燃气泄漏扩散数值模拟[J]. 清华大学学报(自然科学版), 2017, 57(3): 274-280.
[3] 景李玥, 霍佳龙, 姚兆普, 游小清, 朱民. ADN基液体推进剂空间发动机工作过程模拟[J]. 清华大学学报(自然科学版), 2016, 56(10): 1085-1090.
[4] 李想, 顾春伟. 轴流压气机带冠静叶和不带冠静叶的比较研究[J]. 清华大学学报(自然科学版), 2015, 55(12): 1361-1366.
[5] 刘思, 张永良. 多向不规则波群传播的数值模拟[J]. 清华大学学报(自然科学版), 2015, 55(12): 1289-1295.
[6] 王春财, 程嘉, 季林红, 路益嘉, 孙钰淳, 林嘉. 基于Delaunay三角形网格的2维DSMC算法实现及应用[J]. 清华大学学报(自然科学版), 2015, 55(10): 1079-1086,1097.
[7] 张璜,薄涵亮. 基于Lagrange-Euler方法的多液滴运动模型[J]. 清华大学学报(自然科学版), 2015, 55(1): 105-114.
[8] 吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn