Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (10): 1098-1104    DOI: 10.16511/j.cnki.qhdxxb.2015.22.006
  热能工程 本期目录 | 过刊浏览 | 高级检索 |
气流床煤加氢气化反应器的数值模拟及流场特性分析
管清亮, 毕大鹏, 吴玉新, 张建胜
清华大学 热能工程系, 热科学与动力工程教育部重点实验室, 北京 100084
Numerical simulation of the flow field characteristics in an entrained flow coal hydrogasifier
GUAN Qingliang, BI Dapeng, WU Yuxin, ZHANG Jiansheng
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1536 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文通过对Rockwell公司开发的6 t/d的气流床煤加氢气化反应器的3维数值模拟, 模拟了加氢气化反应器内的流场和反应过程。模拟采用了Johnson和Tran的加氢热解动力学模型, 并且考虑了焦油的加氢裂解反应。数值模拟预测结果和6 t/d加氢气化反应器的实验结果符合得较好。模拟结果表明: 加氢气化反应器内的流场可以分为交叉撞击区、射流-回流区和管流区3个区域。一次脱挥发分反应在煤粉和炽热氢气快速混合后的很短时间内就能完成, 甲烷主要在交叉撞击区和射流-回流区生成, 加氢气化反应器下部大部分区域为管流区。在交叉撞击区及射流-回流区, 颗粒粒径越小则颗粒升温及失去质量越早; 在管流区, 颗粒粒径对颗粒的质量变化及温度历程影响不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
管清亮
毕大鹏
吴玉新
张建胜
关键词 气化方法煤加氢气化数值模拟气流床    
Abstract:The flow field and reaction processes in a coal hydrogasifier reactor were modeled using a three-dimensional numerical model of Rockwell's 6 t/d entrained flow coal hydrogasifier using the hydropyrolysis kinetic model developed by Johnson and Tran as well as tar hydrocracking reactions. The numerical predictions were in good agreement with experimental results for the 6 t/d hydrogasifier. The simulations show that the flow field in the hydrogasifier can be categorized into a cross-flow impinging region, a jet-reflux flow region, and a plug flow region. The primary devolatilization reactions are complete immediately after the rapid mixing of the hot hydrogen and coal particles. The methane is mainly produced in the cross-flow impinging region and jet-reflux region. Most of the lower hydrogasifier has plug flow. Small particles are heated and lose weight faster in the cross-flow impinging region and jet-reflux flow region, while in the plug flow region, the particle size has minor effect on the particle temperature and mass history.
Key wordsgasification method    coal hydrogasification    numerical simulation    entrained flow
收稿日期: 2014-04-11      出版日期: 2015-10-15
ZTFLH:  TQ546.2  
基金资助:国家“八六三”高技术项目(2011AA05A201)
通讯作者: 张建胜,教授,E-mail:zhang-jsh@tsinghua.edu.cn     E-mail: zhang-jsh@tsinghua.edu.cn
作者简介: 管清亮(1988-),男(汉),江西,博士研究生。
引用本文:   
管清亮, 毕大鹏, 吴玉新, 张建胜. 气流床煤加氢气化反应器的数值模拟及流场特性分析[J]. 清华大学学报(自然科学版), 2015, 55(10): 1098-1104.
GUAN Qingliang, BI Dapeng, WU Yuxin, ZHANG Jiansheng. Numerical simulation of the flow field characteristics in an entrained flow coal hydrogasifier. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1098-1104.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.22.006  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I10/1098
  图1 Rockwell加氢气化反应器结构简图
  表1 Rockwell加氢气化反应器运行参数
  图2 网格划分及边界条件
  表2 焦炭异相反应动力学参数
  表3 气相反应的化学反应速率(R=8.314J·mol-1·K-1)
  图3 转化率及出口温度数值模拟与实验结果[3]对比
  图4 工况3加氢气化反应器上部0.5m 流场
  图5 工况3加氢气化反应器不同截面上径向温度分布
  图6 工况3加氢气化反应器截面平均碳转化率随反应器高度分布(线:数值模拟;点:实验数据[3])
  图7 工况3的CH4 源项分布图
  图8 工况3典型颗粒的质量变化及温度变化曲线
[1] Zhang A, Kaiho A, Yasuda H, et al. Fundamental studies on hydrogasification of Taiheiyo coal [J]. Energy, 2005, 30(11/12): 2243-2250.
[2] Friedman J. Development of a Single-Stage, Entrained-Flow, Short-Residence-Time Hydrogasifier [R]. FE-2518-24. Canoga Park, CA, USA: Rockwell International, 1979.
[3] Johnson J L, Tran D Q. Kinetics of Devolatilization and Rapid-Rate Methane Formation [R]. GRI-78/0049. Chicago, IL, USA: Institute of Gas Technology, 1980.
[4] Kalinenko R A, Levitskii A A, Polak L S, et al. Calculation and theoretical investigation of processes occurring in the pyrolysis and hydropyrolysis of coal [J]. Kinetics and Catalysis, 1985, 26(6): 1149-1156.
[5] Sprouse K M. Modeling pulverized coal conversion in entrained flows [J]. AIChE Journal, 1980, 26(6): 964-975.
[6] Goyal A, Gidaspow D. Modeling of entrained flow coal hydropyrolysis reactors. 1: Mathematical formulation and experimental-verification [J]. Industrial & Engineering Chemistry Process Design and Development, 1982, 21(4): 611-624.
[7] Goyal A, Gidaspow D. Modeling of entrained flow coal hydropyrolysis reactors. 2: Reactor design [J]. Industrial & Engineering Chemistry Process Design and Development, 1982, 21(4): 625-632.
[8] Asaoka Y, Azuma T, Kawamoto M, et al. Development of coal hydrogasification technology. 3: Simulation incorporated the hydro-pyrolysis model into computational fluid dynamics [C]// 17th Annual International Pittsburgh Coal Conference. Pittsburgh, PA, USA, 2000.
[9] YAN Linbo, HE Boshu, PEI Xiaohui, et al. Kinetic models for coal hydrogasification and analyses of hydrogasification characteristics in entrained-flow gasifiers [J]. Energy & Fuels, 2013, 27 (11): 6388-6396.
[10] YAN Linbo, HE Boshu, PEI Xiaohui, et al. Computational-fluid-dynamics-based evaluation and optimization of an entrained-flow gasifier potential for coal hydrogasification [J]. Energy & Fuels, 2013, 27(11): 6397-6407.
[11] Grant D M, Pugmire R J, Fletcher T H, et al. Chemical model of coal devolatilization using percolation lattice statistics [J]. Energy & Fuels, 1989, 3(2): 175-186.
[12] Tomita A, Mahajan O P, Walker Jr P L. Reactivity of heat-treated coals in hydrogen [J]. Fuel, 1977, 56(2): 137-144.
[13] Watanabe H, Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier [J]. Fuel, 2006, 85(12/13): 1935-1943.
[14] Suuberg E M, Peters W A, Howard J B. Product composition and kinetics of lignite pyrolysis [J]. Industrial & Engineering Chemistry Process Design and Development, 1978, 17(1): 37-46.
[15] Greene M I. Engineering development of a short residence time, coal hydropyrolysis process [J]. Fuel Processing Technology, 1978, 1(3): 169-185.
[16] Magnussen B F, Hjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion [J]. Symposium (International) on Combustion, 1977, 16(1): 719-729.
[17] Graber W D, Huttinger K J. Chemistry of methane formation in hydrogasification of aromatics. 1: Non-substituted aromatics [J]. Fuel, 1982, 61(6): 499-504.
[18] Graber W D, Huttinger K J. Chemistry of methane formation in hydrogasification of aromatics. 2: Aromatics with aliphatic groups [J]. Fuel, 1982, 61(6): 505-509.
[19] Serio M A, Peters W A, Howard J B. Kinetics of vapor-phase secondary reactions of prompt coal pyrolysis tars [J]. Industrial & Engineering Chemistry Research, 1987, 26(9): 1831-1838.
[20] Virk P S, Chambers L E, Woebcke H N. Thermal Hydrogasification of Aromatic Compounds [M]. Massey L G, ed. Coal Gasification. Washington, DC: American Chemical Society, 1974: 237-258.
[21] SUN Zhonghua, DAI Zhenghua, ZHOU Zhijie, et al. Numerical simulation of industrial opposed multiburner coal-water slurry entrained flow gasifier [J]. Industrial & Engineering Chemistry Research, 2012, 51(6): 2560-2569.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[8] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[9] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[10] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[11] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[12] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[13] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[14] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[15] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn