Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (10): 1079-1086,1097    DOI: 10.16511/j.cnki.qhdxxb.2015.22.010
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于Delaunay三角形网格的2维DSMC算法实现及应用
王春财, 程嘉, 季林红, 路益嘉, 孙钰淳, 林嘉
清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084
2-D DSMC algorithm based on Delaunay triangles
WANG Chuncai, CHENG Jia, JI Linhong, LU Yijia, SUN Yuchun, LIN Jia
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1887 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 传统的直接模拟Monte Carlo(DSMC)程序以直角网格为基础, 在计算复杂的流动边界时不可避免地会带来一定误差。非结构网格虽然能够贴体地适应任何复杂流动边界, 但因其拓扑结构的无序性、算法复杂、效率低等缺点而较少使用。该文提出一种基于Delaunay三角形网格的粒子轨迹追踪算法。该算法用背景网格将计算域分成若干矩形区域, 通过首先确定矩形区域再搜索三角形网格的方法实现粒子轨迹的追踪与定位。以该算法为核心编制了C语言版本的2维DSMC计算程序。通过与经典文献算例对比, 验证了该算法的有效性。利用该DSMC程序研究了真空腔室内喷淋头(showerhead)微孔孔径变化对流场分布均匀性的影响。中性参考气体为氩气, 固定入口压力200 Pa、温度300 K。结果表明: 增加微孔孔径有利于提高径向速度和温度分布的均匀性, 而减小微孔孔径有利于提高径向压力分布的均匀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王春财
程嘉
季林红
路益嘉
孙钰淳
林嘉
关键词 真空腔室喷淋头微孔DSMC数值模拟非结构网格    
Abstract:Traditional direct simulation Monte Carlo (DSMC) models using rectangular elements inevitably have errors when dealing with complex computational domain boundaries. Unstructured grids are able to adapt to any complex geometric shape but are rarely applied because of the highly disordered topological structure, complex calculations and low execution efficiency. This paper describes a particle trajectory tracking algorithm based on an unstructured Delaunay triangle mesh. The computational domain is divided into various rectangular regions with only a small number of triangular elements with the particle trajectory tracking achieved by first searching the rectangular regions and then the triangular elements. The algorithm is used in a two-dimensional DSMC program with the results comparing well with results in the literature. The DSMC program is then used to predict the flow field in a showerhead aperture with argon as the neutral reference gas with an inlet pressure of 200 Pa and an inlet temperature of 300 K. The results show that the radial velocity and temperature distributions are less affected by the showerhead aperture than by the radial pressure distribution. Increasing the showerhead aperture improves the radial velocity and temperature distribution uniformity, while decreasing the showerhead aperture improves the radial pressure distribution uniformity.
Key wordsvacuum chamber    showerhead    millipore    direct simulation Monte Carlo (DSMC)    numerical simulation    unstructured grid
收稿日期: 2015-03-20      出版日期: 2015-11-16
ZTFLH:  TB71+1  
基金资助:国家自然科学基金项目(51005132);国家科技重大专项资助项目(2011ZX02403-004)
通讯作者: 季林红,教授,E-mail:jilinhong@tsinghua.edu.cn     E-mail: jilinhong@tsinghua.edu.cn
作者简介: 王春财(1974-),男(汉),吉林,博士研究生。
引用本文:   
王春财, 程嘉, 季林红, 路益嘉, 孙钰淳, 林嘉. 基于Delaunay三角形网格的2维DSMC算法实现及应用[J]. 清华大学学报(自然科学版), 2015, 55(10): 1079-1086,1097.
WANG Chuncai, CHENG Jia, JI Linhong, LU Yijia, SUN Yuchun, LIN Jia. 2-D DSMC algorithm based on Delaunay triangles. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1079-1086,1097.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.22.010  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I10/1079
  图1 DSMC代码构成
  图2 粒子信息数据组织形式
  图3 网格单元内位置点的判断过程
  图4 粒子运动轨迹同物面边界碰撞的判断过程
  图5 粒子轨迹追踪过程
  图6 速度云图及粒子迹线
  图7 MEMS喷管内气流轴向速度分布
  图8 单个喷淋孔2维结构简图
  图9 DSMC计算域
  表1 喷淋头微孔模拟计算物理参数
  图10 喷淋头微孔气流速度云图
  图11 径向速度均匀性分布
  图12 径向压力均匀性分布
  图13 径向温度均匀性分布
[1] Quirk M, Serda J. 半导体制造技术 [M]. 韩郑生, 译. 北京: 电子工业出版社, 2004.Quirk M, Serda J. Semiconductor Manufacturing Technology [M]. HAN Zhengsheng, trans. Beijing: Publishing House of Electronics Industry, 2004. (in Chinese)
[2] 谢欣峰. 高密度电浆用于十二吋晶圆0.22微米线宽铝内连线结构高选择比蚀刻研究 [D]. 台中: 逢甲大学, 2007.XIE Xinfeng. High Density Plasma Used in High Sensitivity Etching of Aluminum Inner Connection Structure with 0.22 Micrometer CD of 12 Inches Wafer [D]. Taichung: Feng Chia University, 2007. (in Chinese)
[3] Chen I. Mass transfer analyses of the plasma deposition process [J]. Thin Solid Films, 1983, 101(1): 41-53.
[4] Caquineau H, Despax B. Influence of the reactor design in the case of silicon nitride PECVD [J]. Chemical Engineering Science, 1997, 52(17): 2901-2914.
[5] Nienhuis G J, Goedheer W. Modelling of a large scale reactor for plasma deposition of silicon [J]. Plasma Sources & Technology, 1999, 8(2): 295-298.
[6] Sobbia R, Sansonnens L, Bondkowski J. Uniformity study in large-area showerhead reactors [J]. Journal of Vacuum Science & Technology, 2005, 23(4): 927-932.
[7] Sansonnens L, Howling A A, Hollenstein C. A gas flow uniformity study in large-area showerhead reactors for RF plasma deposition [J]. Plasma Sources & Technology, 2000, 9(2): 205-209.
[8] Howling A A, Legradic B, Chesaux M, et al. Plasma deposition in an ideal showerhead reactor: A two-dimensional analytical solution [J]. Plasma Sources & Technology, 2012, 21: 0150051-01-0150051-15.
[9] Bird G A. Approach to translational equilibrium in a rigid sphere gas [J]. Physics of Fluids, 1963, 6(10): 1518-1519.
[10] Celenligl M C, Moss J N. Application of the DSMC method to hypersonic flow about a delta wing [C]// International Symposium on Rarefied Gas Dynamics. Aachen, Germany, 1990.
[11] Wagner W. A convergence proof for Bird's direct simulation Monte Carto method for the Boltzmann equation [J]. Journal of Statistical Physics, 1992, 66(3/4): 1011-1044.
[12] Pulvircnti M, Wagner W, Zavelani M B. Convergence of particle schemes for the Boltzmann equation [J]. European Journal of Mechanics B: Fluids, 1994, 13(3): 339-351.
[13] Bird G A. Molecular Gas Dynamics [M]. Oxford: Clarendon Press, 1976.
[14] Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows [M]. Oxford: Clarendon Press, 1994.
[15] Bird G A. Application of the DSMC Method to the Full Shuttle Geometry [R]. AIAA 90-1692. Washington DC, 1990.
[16] 樊菁, 彭世锍, 刘宏立, 等. DSMC 位置元方案中的表面元的程序标识及分子表面反射的确定论判据 [J]. 力学学报, 1999, 31(6): 671-676.FAN Jing, PENG Shiliu, LIU Hongli, et al. Program making of surface elements and the determination of molecular surface reflection in position element algorithm of DSMC method [J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(6): 671-676. (in Chinese)
[17] 樊菁, 刘宏立, 沈青, 等. 直接统计模拟位置元方法中的分子表面反射确定论判据 [J]. 空气动力学学报, 2000, 18(2): 180-187.FAN Jing, LIU Hongli, SHEN Qing, et al. A molecular reflection deterministic criterion used in the position element algorithm of direct statistical simulation [J]. Acta Aerodynamica Sinica, 2000, 18(2): 180-187. (in Chinese)
[18] 沈青, 樊菁, 胡振华, 等. 过渡领域三维绕流直接统计模拟中的一种新方案 [J]. 空气动力学学报, 1996, 14(3): 295-303.SHEN Qing, FAN Jing, HU Zhenghua, et al. A new version of position element space discretization in direct statistical simulation of three-dimensional flow in transitional regime [J]. Acta Aerodynamica Sinica, 1996, 14(3): 295-303. (in Chinese)
[19]Stanton T K. Simple approximates formulas for back scattering of sound by spherical and elongated objects [J]. Journal of the Acoustical Society in America, 1989, 86 (4): 1499-1510.
[20]Wilmoth R G, LeBeau G J, Carlson A B. DSMC Grid Methodologies for Computing Low Density, Hypersonic Flows about Reusable Launch Vehicles [R]. AIAA 96-1812. Washington DC, 1996.
[21]Laux M, Fasoulas S, Messerschmid E W. Development of a DSMC Code on Planar Unstructured Grids with Automatic Grid Adaptation [R]. AIAA 95-2053. Washington DC, 1996.
[22]王学德, 伍贻兆, 夏健. 二维非结构网格DSMC方法实现及其应用 [J]. 南京航空航天大学学报, 2004, 36(6): 704-707.WANG Xuede, WU Yizhao, XIA Jian. Implementation of 2-D unstructured DSMC method and its application [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2004, 36(6): 704-707. (in Chinese)
[23]Berg M. Computational Geometry: Algorithms and Applications [M]. 北京: 世界图书出版公司, 2013.Berg M. Computational Geometry: Algorithms and Applications [M]. Beijing: World Publishing Corporation, 2013.
[24]刘汝佳, 黄亮. 算法艺术与信息学竞赛 [M]. 北京: 清华大学出版社, 2004.LIU Rujia, HUANG Liang. Algorithm Art and Informatics Competitions [M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
[25]Ikegawa M, Kobayashi J. Development of a rarefied flow simulator using the direct simulation Monte Carlo method [J]. JSME International Journal, 1990, 30: 463- 467.
[26]Nance R P, Hash D B, Hassan H A. Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices [R]. AIAA 97-0375. Washington DC, 1997.[27]Liou W W, Fang Y. Implicit boundary conditions for direct simulation Monte Carlo method in MEMS flow predictions [J]. Computer Modeling in Engineering & Science, 2000, 4: 119-128.
[28]王沫然, 王金库, 李志信. DSMC方法的压力边界条件实现 [J]. 计算物理, 2004, 21(4): 316-320.WANG Moran, WANG Jinku, LI Zhixin. New implement of pressure boundary conditions for DSMC [J]. Chinese Journal of Computational Physics, 2004, 21(4): 316-320. (in Chinese)
[29]Alexeenko A A, Levin D A, Fedosov D A, et al. Performance analysis of microthrusters based on coupled thermal-fluid modeling and simulation [J]. Journal of Propulsion and Power, 2005, 21(1): 95-101.
[30]Hash D B, Mihopoulos T, Govindan T R, et al. Characterization of showerhead performance at low pressure [J]. Journal of Vacuum Science & Technology, 2000, 18(6): 2808-2813.
[31]麦克劳德. 光学薄膜技术 [M]. 周九林, 尹树百, 译. 北京: 国防工业出版社, 1974.Macleod H A. Optical Thin Film Technology [M]. ZHOU Jiulin, YIN Shubai, trans. Beijing: National Defence Industry Press, 1974.(in Chinese)
[1] 杨明祥, 王浩, 蒋云钟, 雷晓辉, 宋健蛟. 基于数值模拟的雅砻江流域风能资源初步评估[J]. 清华大学学报(自然科学版), 2018, 58(1): 101-107.
[2] 王岩, 黄弘, 黄丽达, 李云涛. 土壤大气耦合的燃气泄漏扩散数值模拟[J]. 清华大学学报(自然科学版), 2017, 57(3): 274-280.
[3] 景李玥, 霍佳龙, 姚兆普, 游小清, 朱民. ADN基液体推进剂空间发动机工作过程模拟[J]. 清华大学学报(自然科学版), 2016, 56(10): 1085-1090.
[4] 李想, 顾春伟. 轴流压气机带冠静叶和不带冠静叶的比较研究[J]. 清华大学学报(自然科学版), 2015, 55(12): 1361-1366.
[5] 刘思, 张永良. 多向不规则波群传播的数值模拟[J]. 清华大学学报(自然科学版), 2015, 55(12): 1289-1295.
[6] 管清亮, 毕大鹏, 吴玉新, 张建胜. 气流床煤加氢气化反应器的数值模拟及流场特性分析[J]. 清华大学学报(自然科学版), 2015, 55(10): 1098-1104.
[7] 张璜,薄涵亮. 基于Lagrange-Euler方法的多液滴运动模型[J]. 清华大学学报(自然科学版), 2015, 55(1): 105-114.
[8] 吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn