Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (10): 1105-1109,1116    DOI: 10.16511/j.cnki.qhdxxb.2015.22.020
  热能工程 本期目录 | 过刊浏览 | 高级检索 |
超临界CO2在地下盐水层内弥散现象的数值模拟
高诚, 胥蕊娜, 姜培学
清华大学 热能工程系, 热科学与动力工程教育部重点实验室, 二氧化碳资源利用与减排技术北京市重点实验室, 北京 100084
Numerical simulation of the dispersion of supercritical CO2 storage in saline aquifers
GAO Cheng, XU Ruina, JIANG Peixue
Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3396 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在超临界CO2地质封存过程中, CO2在迁移过程中溶于盐水产生密度梯度, 从而在盐水层中弥散并沉降, 这对于减少盖层承受压力、降低CO2的泄露风险以及提高地下CO2的封存容量具有很重要的意义。该文研究了超临界CO2注入储层多孔结构后CO2在盐水中的弥散质量随时间的变化规律, 分析了CO2地质封存工程应用中的关键参数盐度、温度、压强对一定时间内单位体积盐水层中CO2弥散质量的影响。研究表明: 对于渗透率以及颗粒分布状况相同的储层结构, 在CO2自由区气相饱和度相同时, 盐水层盐度越大, 指进现象越不明显, 盐水层溶解CO2的质量也越少; 盐水层温度越高, 指进现象越明显, 但是盐水层溶解CO2的质量减小; 盐水层的压强越大, 指进现象越明显, 盐水层溶解CO2质量越大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高诚
胥蕊娜
姜培学
关键词 二氧化碳封存指进现象弥散    
Abstract:Supercritical CO2 storage in saline aquifers results in a density gradient which causes dispersion and sedimentation due to CO2 dissolving in the brine during the CO2 migration. This density gradient plays a significant role in promoting the geological storage capacity, reducing pressures on the caprock, and reducing the CO2 leakage risk. This paper describes numerical investigations of the influence of key parameters such as the salinity, temperature, and pressure on the amount of CO2 dissolved in brine per unit volume over time. The results show that, for the same permeability and porous structure of the saline aquifer, a higher salinity leads to weak fingering with small amounts of dissolved CO2. Higher temperatures contribute to strong fingering and small amounts of dissolved CO2. Higher pressures also produce fingering with large amounts of dissolved CO2.
Key wordscarbondioxide storage    fingering phenomenon    dispersion
收稿日期: 2014-08-14      出版日期: 2015-11-16
ZTFLH:  TK124  
基金资助:国家国际科技合作专项项目(2012DFG61510);教育部科学技术研究项目(113008A);北京高等学校青年英才计划项目(YETP0092)
通讯作者: 姜培学,教授,E-mail:jiangpx@mail.tsinghua.edu.cn     E-mail: jiangpx@mail.tsinghua.edu.cn
作者简介: 高诚(1989-),男(汉),山东,博士研究生。
引用本文:   
高诚, 胥蕊娜, 姜培学. 超临界CO2在地下盐水层内弥散现象的数值模拟[J]. 清华大学学报(自然科学版), 2015, 55(10): 1105-1109,1116.
GAO Cheng, XU Ruina, JIANG Peixue. Numerical simulation of the dispersion of supercritical CO2 storage in saline aquifers. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1105-1109,1116.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.22.020  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I10/1105
  图1 计算区域示意图及计算物理模型
  图2 不同盐分情况下的盐水中溶解的CO2 质量分数分布图
  图3 不同的盐度下单位体积溶解CO2质量与时间的关系
  图4 不同温度情况下的盐水中溶解的CO2 质量分数分布图
  图5 不同的温度下单位体积溶解CO2  质量与时间的关系
  图6 不同压力情况下的盐水中溶解的CO2  质量分数分布图
  图7 二氧化碳密度在不同压强下与温度的关系曲线 (数据来自Nist Refprop软件)
  图8 不同压强下单位体积溶解CO2 质量与时间的关系
[1] Metz B, Davidson O R, Bosch P R, et al. Summary for Policymakers [C]// Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007.
[2] 刘翠兰, 曹东, 张战胜, 等. 二氧化碳捕集、利用与封存环境风险评估技术指南(试行)(征求意见稿) [R]. 北京: 环境保护部环境规划院, 中国科学院武汉岩土力学研究所, 环境保护部环境工程评估中心, 中国地质调查局水文地质环境地质调查中心. 2014.LIU Cuilan, CAO Dong, ZHANG Zhansheng, et al. Environmental Risk Assessment Guidelines for Carbon Dioxide Capture, Utilization and Storage (Trial Version) (Draft) [R]. Beijing: Chinese Academy for Environmental Planning, Ministry of Environmental Protection of China; Institute of Rock and Soil Mechanics, Chinese Academy of Sciences; Appraisal Center of Environmental Engineering, Ministry of Environmental Protection of China; Center of Hydrogeological Environment Geological Survey, China Geological Survey. 2014. (in Chinese)
[3]Boek E S, Venturoli M. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries [J]. Comput Math Appl, 2010, 59: 2305-2314.
[4]高诚, 胥蕊娜, 姜培学. 基于二氧化碳封存的超临界两相流动的数值研究[J]. 工程热物理学报, 2014, 35(5): 944-947. GAO Cheng, XU Ruina, JIANG Peixue. The numerical investigation of supercritical two phase fluid flow in support of carbon dioxide storage [J]. Journal of Engineering Thermophysics, 2014, 35(5): 944-947. (in Chinese)
[5]Chen L, Kang Q, Robinson B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems [J]. Phys Rev E, 2013, 87, 043306.
[6]Dou Z, Zhou Z F. Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice Boltzmann method [J]. Int J Heat Fluid Flow, 2013, 42: 23-32.
[7]Perrin J C, Benson S. An experimental study on the influence of sub-core scale heterogeneities on CO2 distribution in reservoir rocks [J]. Transp Porous Med, 2010, 82: 93-109.
[8]Rangel-German E R, Kovscek A R. A micromodel investigation of two-phase matrix-fracture transfer mechanisms [J]. Water Resources Research, 2006, 42, W03401.
[9]马瑾, 胥蕊娜, 罗庶, 等. 超临界压力CO2在深部咸水层中运移规律研究[J]. 工程热物理学报, 2012, 33(11): 1971-1975.MA Jin, XU Ruina, LUO Shu, et al. Core-scale experimental study on supercritical-pressure CO2 migration mechanism during CO2 geological storage in deep saline aquifers [J]. Journal of Engineering Thermophysics, 2012, 33(11): 1971-1975. (in Chinese)
[10]Pruess K, Garcla J, Kovscek T, et al. Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2[J]. Energy, 2004, 29: 1431-1444.
[11]Class H, Ebigbo A, Helmig R, et al. A benchmark study on problems related to CO2 storage in geologic formations [J]. Computational Geosciences, 2009, 13(4): 409-434.
[12]Lindeberg E, Zweigel P, Bergmo P, et al. Prediction of CO2 dispersal pattern improved by geology and reservoir simulation and verified by time lapse seismic [C]// Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies. Cairns, Australia, 2000.
[13]Pruess K. The TOUGH codes: A family of simulation tools for multiphase flow and transport processes in permeable media [J]. Vadose Zone Journal, 2004, 3: 738-746.
[14]LI Qi. Coupled reactive transport model for heat and density driven flow in CO2 storage in saline aquifers [J]. Journal of Hazardous Toxic and Radioactive Waste, 2011, 15: 251-258.
[1] 马喜振, 贾海军, 刘洋. 竖直管道内强迫循环下非凝性气体对蒸汽冷凝的影响[J]. 清华大学学报(自然科学版), 2017, 57(5): 530-536.
[2] 赵富龙, 赵陈儒, 薄涵亮. 单液滴运动相变模型[J]. 清华大学学报(自然科学版), 2016, 56(11): 1213-1219.
[3] 赵富龙, 薄涵亮, 刘潜峰. 压力变化条件下静止液滴相变模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 759-764,771.
[4] 袁杨, 李祥东, 屠基元. 纳米流体沸腾模型中某些物理参数的理论探讨[J]. 清华大学学报(自然科学版), 2015, 55(7): 815-820.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn