Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (3): 312-317    DOI: 10.16511/j.cnki.qhdxxb.2016.21.022
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
活性炭吸附放射性废水中U(Ⅵ)的特性研究
于静1,2, 王建龙1,3, 蒋翼周2
1. 清华大学核能与新能源技术研究院, 先进核能技术协同创新中心, 北京 100084;
2. 西北核技术研究所, 西安 710024;
3. 清华大学放射性废物处理北京市重点实验室, 北京 100084
Adsorption of uranium (Ⅵ) by activated carbon from radioactive wastewater
YU Jing1,2, WANG Jianlong1,3, JIANG Yizhou2
1. Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
2. Northwest Institute of Nuclear Technology, Xi'an 710024, China;
3. Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China
全文: PDF(1829 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文研究了活性炭对放射性废水中铀的吸附特性, 所研究的影响因素包括接触时间、溶液的pH值pHa、铀的初始浓度和实验温度。利用能谱扫描电镜(SEM)、透射电镜(TEM)、X射线能谱(EDS)和红外光谱(FTIR)对活性炭的表面物化性质和表面功能团进行了表征。结果表明, 活性炭表面存在羟基官能团并对吸附起重要作用; 吸附反应在30 min内可以达到平衡; pHa在3~9对吸附影响较大, 在3< pHa< 5时吸附容量和吸附率增大, 在5< pHa< 7时吸附容量和吸附率减小, 在7< pHa< 9时吸附容量和吸附率上升较快; U(Ⅵ)在活性炭上的吸附反应符合Tempkin、Slip和D-R等温模型及准一级动力学方程; 吸附反应是自发放热熵增过程。饱和吸附容量为62.50 mg·g-1, 吸附率最大为99.23%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于静
王建龙
蒋翼周
关键词 活性炭U(Ⅵ)吸附放射性废水    
Abstract:The adsorption of uranium from wastewater onto activated carbon was investigated in batch experiments. Four independent variables, the contact time, solution pHa, initial uranium concentration and temperature, were varied to determine the influence of these parameters on the adsorption of the uranium from water. The activated carbon size were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with the element content characterized by energy dispersive X-ray spectrometer (EDS) and surface functional groups characterized by infrared spectrocopy (FTIR). The FTIR spectra indicated that hydroxyl groups are present on the surface of the activated carbon and affected the adsorption. The U(Ⅵ) adsorption onto activated carbon reached sorption equilibrium within 30 min. The adsorption of U(Ⅵ) on activated carbon was strongly dependent on the pHa in the range of 3.0~9.0. The adsorption capacity and removal percent increase for pHa from 3 to 5, decrease for pHa=5~7, and then increase quickly for pHa=7~9. The U(Ⅵ) adsorption on activated carbon is well described by a pseudo-second-order kinetic model and the Tempkin, Slip, and D-R isotherm models. The sorption reaction is spontaneous, exothermic and increases the entropy. The maxmium adsorption capacity is 62.50 mg·g-1. The maxmium removal rate is 99.23%.
Key wordsactivated carbon    U(Ⅵ)    adsorption    radioactive wastewater
收稿日期: 2015-09-14      出版日期: 2016-04-01
ZTFLH:  O615.2  
通讯作者: 王建龙,教授,E-mail:wangjl@tsinghua.edu.cn     E-mail: wangjl@tsinghua.edu.cn
引用本文:   
于静, 王建龙, 蒋翼周. 活性炭吸附放射性废水中U(Ⅵ)的特性研究[J]. 清华大学学报(自然科学版), 2016, 56(3): 312-317.
YU Jing, WANG Jianlong, JIANG Yizhou. Adsorption of uranium (Ⅵ) by activated carbon from radioactive wastewater. Journal of Tsinghua University(Science and Technology), 2016, 56(3): 312-317.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.21.022  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I3/312
  图1 活性炭的SEM 和FEM 照片
  表1 活性炭吸附U(Ⅵ)前后的元素质量百分比的EDS测定结果
  图2 活性炭吸附U(Ⅵ)前的红外谱图
  图3 活性炭吸附U(Ⅵ)后的红外谱图
  图4 接触时间对活性炭吸附U(Ⅵ)的影响 (C0=20mg·L-1,pHa=5.0±0.2,T=25℃)
  图5 活性炭吸附U(Ⅵ)的准一级、准二级、 Elovich和内扩散动力学模拟结果
  表2 动力学模型拟合活性炭吸附U(Ⅵ)的参数值
  图6 pHa 对活性炭吸附U(Ⅵ)的影响 (C0=20mg·L-1,t=12h,T=25℃)
  图7 C0对活性炭吸附U(Ⅵ)的影响 (pHa=5.0±0.2,t=12h,T=25℃)
  图8 活性炭吸附U(Ⅵ)的Langmuir,Freundlich, Temkin,RGP,Slips,DGR 等温模式模拟结果
  图9 温度对活性炭吸附U(Ⅵ)的影响 (pHa=5.0±0.2,C0=20mg·L-1,t=12h)
  表3 活性炭吸附U(Ⅵ)的热力学拟合参数
[1] Wang J L, Chen C. Biosorbents for heavy metals removal and their future[J]. Biotechnology advances, 2009, 27(2):195-226.
[2] 徐乐昌, 张国甫, 高洁, 等. 铀矿冶废水的循环利用和处理[J]. 铀矿冶, 2010, 29(2):78-81.XU Lechang, ZHANG Guofu, GAO Jie, et al. Recycl ing and reuse of wastewater from uranium mining and milling[J]. Uranium Mining and Metallurgy, 2010, 29(2):78-81. (in Chinese)
[3] 杜良, 李烨, 王萍, 等. 铀污染土壤生物修复研究进展[J]. 环境工程, 2013, 31(增刊):543-546.DU Liang, LI Hua, WANG Ping, et al. Research progress of bioremediation of contaminated soil by uranium[J]. Environmental Engineering, 2013, 31(Suppl):543-546. (in Chinese)
[4] 李小燕, 张明, 刘义保, 等. 花生壳活性炭吸附溶液中的铀[J]. 化工环保, 2013, 33(3):202-205.LI Xiaoyan, ZHANG Ming, LIU Yibao, et al. Adsorption of uranium from aqueous solution with peanut shell activated carbon[J]. Environmental protection of chemical industry, 2013, 33(3):202-205. (in Chinese)
[5] Kutahyali C, Eral M. Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation[J]. Separation and Purification Technology, 2004, 40:109-114.
[6] Kutahyali C, Eral M. Sorption studies of uranium and thorium on activated carbon prepared from olive stones:Kinetic and thermodynamic aspects[J]. Journal of Nuclear Materials, 2010(396):251-256.
[7] Mellah A, Chegrouche S, Barkat M. The removal of uranium(Ⅵ) from aqueous solutions onto activated carbon:Kinetic and thermodynamic investigations[J]. Journal of Colloid and Interface Science, 2006(296):434-441.
[8] Yakout S M, Metwally S S, Zakla T E. Uranium sorption onto activated carbon prepared from rice straw:Competition with humic acids[J]. Applied Surface Science, 2013(280):745-750.
[9] Ahmed S H, Sharaby C M, EI Gammal M E. Uranium extraction from sulfuric acid medium using trioctylamine impregnated activated carbon[J]. Hydrometallurgy, 2013(134-135):150-157.
[10] Lei F A, Fan F L, Bai J, et al. Sorption of uranium with functionalized nanoporous carbons[J]. IMP & HIRFL Annual Report, 2009(2-38):73-74.
[11] Zhao Y S, Liu C X, Feng M, et al. Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon[J]. Journal of Hazardous Materials, 2010(176):119-124.
[12] Mayyasa M, Harahsheh M A, Wei X Y. Solid phase extractive preconcentration of uranium from Jordanian phosphoric acid using 2-hydroxy-4-aminotriazine-anchored activated carbon[J]. Hydrometallurgy, 2014(149):41-49.
[13] Liu Y H, Wang Y Q, Zhang Z B, et al. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent[J]. Applied Surface Science, 2013(273):68-74.
[14] Kumar S, Loganathan V A, Gupta R B, et al. An assessment of U(Ⅵ) removal from groundwater using biochar produced from hydrothermal carbonization[J]. J Environmental Management, 2011(92):2504-2512.
[15] Li B, Ma L J, Tian Yin, et al. A catechol-like phenolic ligand-functionalized hydrothermal carbon:One-pot synthesis, characterization and sorption behavior toward uranium[J]. J Hazardous Materials, 2014(271):41-49.
[16] Fasfous I I, Dawoud J N. Uranium(Ⅵ) sorption by multiwalled carbon nanotubes from aqueous solution[J]. Applied Surface Science, 2012(259):433-440.
[17] 陈玉伟. 磁性壳聚糖吸附重金属及核素的特性和机理研究[D]. 北京:清华大学, 2011.CHEN Yuwei. Characteristics and Mechanism of Heavy Metal and Nuclide Sorption by Magnetic Chitosan[D]. Beijing:Tsinghua University, 2011. (in Chinese)
[1] 杨少霞, 章晶晶, 杨宏伟, 张莉, 高攀. 离子交换树脂吸附氨氮的性能[J]. 清华大学学报(自然科学版), 2015, 55(6): 660-665.
[2] 杨宏伟, 王昊宇, 刘云霞, 刘文君, 杨少霞. O3-BAC工艺对含溴水体消毒副产物生成势的影响[J]. 清华大学学报(自然科学版), 2014, 54(5): 607-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn