Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (9): 969-973    DOI: 10.16511/j.cnki.qhdxxb.2016.21.046
  自动化 本期目录 | 过刊浏览 | 高级检索 |
三维重建中的多模型融合:克服光照和尺度影响
陈宝华, 邓磊, 段岳圻, 陈志祥, 周杰
清华大学 自动化系, 北京 100084
Multiple model fusion in 3-D reconstruction: Illumination and scale invariance
CHEN Baohua, DENG Lei, DUAN Yueqi, CHEN Zhixiang, ZHOU Jie
Department of Automation, Tsinghua University, Beijing 100084, China
全文: PDF(2639 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 互联网图像三维可视化通常使用运动恢复结构方法将互联网图像重构成为三维点云,用于支持用户在三维空间中自由移动观察三维点云和图像。但由于同一场景互联网图像间光照条件差异巨大,传统方法往往不会重构成唯一的三维点云,而是依照光照条件的分布,构建成多个独立的点云。该文提出了一种三维点云配准框架,将这些因为光照差异而分离的点云融合成为统一的点云。首先利用点云的三维几何特征而非二维图像特征描述点云,克服了光照差异对配准的影响。其次提出了一种克服尺度差异的配准方法,以解决不同尺度点云的匹配问题。在两个数据集上的实验证明了该方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宝华
邓磊
段岳圻
陈志祥
周杰
关键词 三维模型配准运动恢复结构尺度自适应主成分迭代最近点算法    
Abstract:3-D internet photo visualization reconstructs objects in 3-D using structure information gained from the object's motion to give users motion experience. However, due to the large illumination difference between photographs on the Internet, traditional reconstruction methods cannot generate a single point cloud, but will generate multiple independent point clouds. This paper describes a 3-D model registration framework based on 3-D geometries that generates unified 3-D models from various illuminations to complete a structure from multiple models. The 3-D point cloud geometry is used instead of the 2-D features to overcome the influence of large illumination changes. Secondly, a scaled-PCA-ICP algorithm was then used to do the registration that can overcome the large scale variance between the two point clouds. Tests on two datasets show the effectiveness of this method.
Key words3-D model registration    structure from motion    scaled-PCA-ICP
收稿日期: 2015-04-25      出版日期: 2016-09-15
ZTFLH:  TP391.41  
通讯作者: 周杰,教授,E-mail:jzhou@tsinghua.edu.cn     E-mail: jzhou@tsinghua.edu.cn
引用本文:   
陈宝华, 邓磊, 段岳圻, 陈志祥, 周杰. 三维重建中的多模型融合:克服光照和尺度影响[J]. 清华大学学报(自然科学版), 2016, 56(9): 969-973.
CHEN Baohua, DENG Lei, DUAN Yueqi, CHEN Zhixiang, ZHOU Jie. Multiple model fusion in 3-D reconstruction: Illumination and scale invariance. Journal of Tsinghua University(Science and Technology), 2016, 56(9): 969-973.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.21.046  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I9/969
  图1 图像旅游(phototourism)示意图
  图2 图像匹配结果对三维重建的影响
  图3 本文方法框架
  图4 在巴黎圣母院和凯旋门数据集上的实验结果
  表1 点云结构完整性分析
  表2 有效图像数量增长分析
[1] Snavely N, Seitz S M, Szeliski R. Photo tourism: Exploring photo collections in 3-D [J]. ACM transactions on graphics, 2006, 25(3): 835-846.
[2] Snavely N, Seitz S M, Szeliski R. Modeling the world from internet photo collections [J]. International Journal of Computer Vision, 2008, 80(2): 189-210.
[3] Lowe D G. Object recognition from local scale-invariant features [C]//Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV). Kerkyra, Greece: IEEE, 1999: 1150-1157.
[4] Yin L, Snavely N, Gehrke J. MatchMiner: Efficient spanning structure mining in large image collections [C]//European Conference on Computer Vision (ECCV). Firenze, Italy: Springer Berlin Heidelberg, 2012:45-58.
[5] Li Y, Snavely N, Dan H, et al. Worldwide pose estimation using 3D point clouds [C]//European Conference on Computer Vision (ECCV). Firenze, Italy: Springer Berlin Heidelberg, 2012:15-29.
[6] Zhong Y. Intrinsic shape signatures: A shape descriptor for 3-D object recognition [C]//2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops). Kyoto, Japan: IEEE, 2009: 689-696.
[7] Henry P, Krainin M, Herbst E, et al. RGB-D mapping: Using Kinect-style depth cameras for dense 3-D modeling of indoor environments [J]. The International Journal of Robotics Research, 2012, 31(5): 647-663.
[8] Newcombe R A, Izadi S, Hilliges O, et al. Kinect fusion: Real-time dense surface mapping and tracking [C]//10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR). Basel, Switzerland: IEEE, 2011: 127-136.
[9] Pomerleau F, Colas F, Siegwart R, et al. Comparing ICP variants on real-world data sets [J]. Autonomous Robots, 2013, 34(3): 133-148.
[10] Besl P J, Mckay N D. Method for registration of 3-D shapes [J]. Proceedings of SPIE-The International Society for Optical Engineering, 1992, 14(3):239-256.
[11] Umeyama S. Least-squares estimation of transformation parameters between two point patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991 (4): 376-380.
[12] Wu C. Towards linear-time incremental structure from motion [C]//International Conference on 3-D Vision (3-DV). Seattle, WA, USA: IEEE, 2013: 127-134.
[13] Furukawa Y, Curless B, Seitz S M, et al. Towards internet-scale multi-view stereo [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA: IEEE, 2010: 1434-1441.
[14] Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1362-1376.
[1] 曹列凯, DETERTMartin, 李丹勋. 基于无人机的长河段表面流场测量系统与应用[J]. 清华大学学报(自然科学版), 2022, 62(12): 1922-1929.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn