Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (9): 937-941    DOI: 10.16511/j.cnki.qhdxxb.2016.21.048
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
基于多芯光纤的最小成本增长型网络设计
李瑶1,2, 华楠1,2, 郑小平1,2
1. 清华信息科学与技术国家实验室, 北京 100084;
2. 清华大学 电子工程系, 北京 100084
CapEx-minimized incremental network design based on multi-core fibers
LI Yao1,2, HUA Nan1,2, ZHENG Xiaoping1,2
1. Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, China;
2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1232 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为满足日益增长的业务需求,光网络需要根据需求进行增长型设计,以提升网络容量和性能。相比现有的光网络中的单芯光纤,多芯光纤可以成倍地提高光纤纤芯密度,为光网络的增长扩容提供更大的容量。该文研究了基于多芯光纤的增长型网络最小成本规划问题,通过建立和求解整数线性规划模型,得到最小新增网络成本和网络设施铺设方案。结果显示:多芯光纤与单芯光纤混合铺设策略可以使新增网络成本达到最小,拓扑增广也可以降低最小新增网络成本。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李瑶
华楠
郑小平
关键词 通信网结构与设计增长型网络设计多芯光纤网络成本最小化整数线性规划    
Abstract:Incremental design is needed to increase the network capacity and provide better network performance to satisfy the growing traffic demands in optical networks. Multi-core fibers can multiply the fiber density and provide much more transmission capacity compared with single-core fibers. This article investigates the CapEx minimization problem for multi-core fiber based incremental optical networks. The CapEx-minimized incremental network design is obtained by solving an integer linear programming model of the optimization problem. The results show that properly deploying of both multi-core and single-core fibers and network topology augmentation will minimize the network CapExs.
Key wordscommunication network structure and design    incremental network design    multi-core fiber    network CapEx minimization    integer linear programming
收稿日期: 2015-01-12      出版日期: 2016-09-15
ZTFLH:  TN915.02  
通讯作者: 郑小平,教授,E-mail:xpzheng@tsinghua.edu.cn     E-mail: xpzheng@tsinghua.edu.cn
引用本文:   
李瑶, 华楠, 郑小平. 基于多芯光纤的最小成本增长型网络设计[J]. 清华大学学报(自然科学版), 2016, 56(9): 937-941.
LI Yao, HUA Nan, ZHENG Xiaoping. CapEx-minimized incremental network design based on multi-core fibers. Journal of Tsinghua University(Science and Technology), 2016, 56(9): 937-941.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.21.048  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I9/937
  表1 光网络各组成部分的单价
  图1 较小网络负载业务场景下的最小新增网络成本
  图2 较小网络负载业务场景单芯光纤与多芯光纤混合铺设策略下的新增光纤铺设方案
  图3 较大网络负载业务场景下的最小新增网络成本
  图4 NSFnet增广拓扑
  图5 在增广拓扑上较大网络负载业务场景单芯光纤与多芯光纤混合铺设策略下的新增建设部分
  表2 不同拓扑下的最小新增网络成本
[1] Li Y, Hua N, Zhang H, et al. Reconfigurable bandwidth service based on optical network state for inter-data center communication [C]//Communications in China (ICCC), 2012 1st IEEE International Conference on. Beijing, China: IEEE, 2012: 282-284.
[2] Winzer P J. Spatial multiplexing: The next frontier in network capacity scaling [C]//Proc European Conference on Optical Communication. London, UK: IEEE, 2013, We.1.D.1.
[3] Hayashi T, Taru T, Shimakawa O, et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber [J]. Optics express, 2011, 19(17): 16576-16592.
[4] Sakaguchi J, Awaji Y, Wada N, et al. 109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber [C]//Optical Fiber Communication Conference. Los Angeles, CA, USA: Optical Society of America, 2011: PDPB6.
[5] Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks [J]. Journal of Lightwave Technology, 2010, 28(4): 662-701.
[6] Hayashi T, Taru T, Shimakawa O, et al. Ultra-low- crosstalk multi-core fiber feasible to ultra-long-haul transmission [C]//National Fiber Optic Engineers Conference. Los Angeles, CA, USA: Optical Society of America, 2011: PDPC2.
[7] Sakaguchi J, Puttnam B J, Klaus W, et al. 19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s [C]//National Fiber Optic Engineers Conference. Los Angeles, CA, USA: Optical Society of America, 2012: PDP5C.1.
[8] Koshiba M, Saitoh K, Takenaga K, et al. Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory [J]. Optics express, 2011, 19(26): B102-B111.
[9] Zhu B, Taunay T F, Yan M F, et al. Seven-core multicore fiber transmissions for passive optical network [J]. Optics Express, 2010, 18(11): 11117-11122.
[10] Korotky S K. Price-points for components of multi-core fiber communication systems in backbone optical networks [J]. Journal of Optical Communications and Networking, 2012, 4(5): 426-435.
[11] Li Y, Hua N, Zheng X. CapEx-minimized planning for multi-core fiber based optical networks [C]//Asia Communications and Photonics Conference. Shanghai, China: Optical Society of America, 2014: ATh3A. 170.
[12] Li Y, Hua N, Zheng X. An analysis of optimized CapEx for multi-core fiber based optical networks [C]//Optical Communications and Networks (ICOCN), 2014 13th International Conference on. Suzhou, China: IEEE, 2014: 1-4.
[13] Li Y, Hua N, Zheng X. CapEx advantages of multi-core fiber networks[J]. Photonic Network Communications, 2016, 31(2): 228-238.
[1] 李培峰, 黄一龙, 朱巧明. 使用全局优化方法识别中文事件因果关系[J]. 清华大学学报(自然科学版), 2017, 57(10): 1042-1047.
[2] 马昱春, 张超, Luk Wayne. 基于混合式两阶段的动态部分重构FPGA软硬件划分算法[J]. 清华大学学报(自然科学版), 2016, 56(3): 246-252,261.
[3] 王晶, 王书宁. 单电梯紧急疏散调度问题求解[J]. 清华大学学报(自然科学版), 2015, 55(5): 550-557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn