Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (9): 913-919    DOI: 10.16511/j.cnki.qhdxxb.2016.21.059
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
融合聚类与排序的图像显著区域检测
刘杰1,2,3, 王生进1,2,3
1. 清华大学 电子工程系, 北京 100084;
2. 智能技术与系统国家重点实验室, 北京 100084;
3. 清华信息科学与技术国家实验室, 北京 100084
Image salient region detection by fusing clustering and ranking
LIU Jie1,2,3, WANG Shengjin1,2,3
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Intelligent Technology and Systems, Beijing 100084, China;
3. Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
全文: PDF(1317 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 显著区域检测是计算机视觉领域中一个极具挑战性的问题。当前,多数显著区域检测算法通过直接计算图像中每个像素或图像块与其一定范围内邻域的差异来判断像素的显著性。当图像背景杂乱或者图像中的前景和背景有相似特征时,这些传统方法的检测性能明显下降。该文提出一个基于再聚类的显著区域检测算法框架:首先,利用聚类算法将图像过分割得到的超像素再聚类成多个超像素簇,其中提出了自动确定尺度参数和聚类个数的方法;其次,基于聚类得到的超像素簇,该文又提出一个自动选择可能的背景簇的方法,并将其作为排序算法中的查询项来估计全图的显著性。在两个差异较大的公开数据集上,该算法实现了相对稳定的显著区域检测结果,而且在部分性能指标上明显优于其他5种算法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘杰
王生进
关键词 显著区域检测谱聚类流形排序    
Abstract:Salient region detection is an extremely challenging problem in computer vision. Most salient region detection algorithms determine the saliency of pixels in the image by directly computing the contrast between a pixel or a patch and its neighborhood within a certain range. When the image background is cluttered or the background and the salient objects in the image have some of the same image features, the detection capabilities of these traditional methods are decreased. A salient region detection framework based on re-clustering is used here. First, a clustering algorithm is used to group superpixels into a number of superpixel clusters by automatically computing the scale parameter and the number of clusters. The algorithm automatically selects possible background clusters from the superpixel clusters with the selected clusters used as queries in a ranking algorithm to obtain the final saliency map. Tests on two public salient region detection datasets show that the algorithm gives stable salient region detection results with better performance metrics than five other algorithms.
Key wordssalient region detection    spectral cluster    manifold ranking
收稿日期: 2016-04-18      出版日期: 2016-09-15
ZTFLH:  TP399  
通讯作者: 王生进,教授,E-mail:wgsgj@tsinghua.edu.cn     E-mail: wgsgj@tsinghua.edu.cn
引用本文:   
刘杰, 王生进. 融合聚类与排序的图像显著区域检测[J]. 清华大学学报(自然科学版), 2016, 56(9): 913-919.
LIU Jie, WANG Shengjin. Image salient region detection by fusing clustering and ranking. Journal of Tsinghua University(Science and Technology), 2016, 56(9): 913-919.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.21.059  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I9/913
  图背景簇选择算法流程图
  图2 ASD数据集上不同显著区域检测算法的结果对比
  表1 不同算法自适应阈值分割结果
  图3 CSSD 数据集上不同显著区域检测算法的结果对比
[1] Papageorgiou C, Poggio T. A trainable system for object detection [J]. International Journal of Computer Vision, 2000, 38(1): 15-33.
[2] Mishra A K, Aloimonos Y, Cheong L F, et al. Active visual segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 639-653.
[3] ZHENG Liang, WANG Shengjin, LIU Z, et al. Fast image retrieval: Query pruning and early termination [J]. IEEE Transactions on Multimedia, 2015, 17(5): 648-659.
[4] LIU Jie, WANG Shengjin, Salient region detection via simple local and global contrast representation [J]. Neurocomputing, 2015, 147(1): 435-443.
[5] REN Zhixiang, GAO Shenghua, Chia L T, et al. Region-based saliency detection and its application in object recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(5): 769-779.
[6] Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine [J]. Computer Networks & Isdn Systems, 1998, 30(98): 107-117.
[7] YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking [C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013: 3166-3173.
[8] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
[9] Von Luxburg U. A tutorial on spectral clustering [J]. Statistics and computing, 2007, 17(4): 395-416.
[10] Van De Weijer J, Schmid C, Verbeek J, et al. Learning color names for real-world applications [J]. IEEE Transactions on Image Processing, 2009, 18(7): 1512-1523.
[11] ZHU Wangjiang, LIANG Shuang, WEI Yichen, et al. Saliency optimization from robust background detection [C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 2814-2821.
[12] ZHOU Dengyong, Weston J, Gretton A, et al. Ranking on data manifolds [J]. Advances in Neural Information Processing Systems, 2004, 16(1): 169-176.
[13] ZHOU Dengyong, Bousquet O, Lal T N, et al. Learning with local and global consistency [J]. Advances in Neural Information Processing Systems, 2004, 16(16): 321-328.
[14] Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection [C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 1597-1604.
[15] SHI Jianping, YAN Qiong, XU Li, et al. Hierarchical image saliency detection on extended CSSD [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 717-729.
[16] CHENG Mingming, Mitra N J, HUANG Xiaolei, et al. Global contrast based salient region detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569-582.
[17] Perazzi F, Krähenbühl P, Pritch Y, et al. Saliency filters: Contrast based filtering for salient region detection [C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 733-740.
[1] 刘杰, 王生进. 基于边界扩展的图像显著区域检测[J]. 清华大学学报(自然科学版), 2017, 57(1): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn