Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (2): 211-217    DOI: 10.16511/j.cnki.qhdxxb.2016.22.011
  精密仪器 本期目录 | 过刊浏览 | 高级检索 |
基于足绑式INS的行人导航三轴磁强计在线校准
张新喜1,2, 张嵘1, 郭美凤1, 程高峰2, 牛树来2
1. 清华大学 精密仪器系, 北京 100084;
2. 装甲兵工程学院 控制工程系, 北京 100072
Online three-axis magnetometer calibration for a pedestrian navigation system using a foot-mounted inertial navigation system
ZHANG Xinxi1,2, ZHANG Rong1, GUO Meifeng1, CHENG Gaofeng2, NIU Shulai2
1. Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
2. Department of Control Engineering, Academy of Armored Force Engineering, Beijing 100072, China
全文: PDF(1610 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于低成本微电子机械系统(MEMS)惯性传感器的足绑式惯性导航系统(INS)是行人自主导航常用的一种方式, 足绑式INS可与磁强计组合来约束航向角误差, 但磁强计存在误差需要校准。该文提出了适合行人导航的磁强计误差模型和在线校准算法。根据磁强计的误差特性和足绑式INS的机动性, 建立了磁强计误差变量的状态方程和观测方程, 利用扩展Kalman滤波器(EKF)对三轴磁强计误差进行在线估计和实时校准, 利用零速修正(ZUPT)算法和磁航向角约束算法对足绑式INS的误差进行约束。为验证算法的有效性, 在操场进行了一圈徒步行走实验。实验结果表明: 使用磁强计误差在线辨识和校准算法后, 与未进行磁强计误差校准相比, 行人导航东向终点误差由-110.7 m减小到1.8 m, 北向终点误差由37.8 m减小到5.2 m, 磁强计误差得到有效校正。该算法实现了基于足绑式INS的行人导航磁强计误差在线校准, 大幅提高了行人自主导航的定位精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张新喜
张嵘
郭美凤
程高峰
牛树来
关键词 行人导航足绑式惯性导航系统(INS)零速修正(ZUPT)扩展Kalman滤波器(EKF)磁强计校准    
Abstract:Foot-mounted inertial navigation systems (INS) having inexpensive micro electro mechanical system (MEMS)-based inertial sensors are widely used for pedestrian navigation. A foot-mounted INS can be combined with a magnetometer to constrain the heading angle error, but the magnetometer needs to be calibrated before use. This paper presents a magnetometer error model and an online calibration algorithm based on the foot-mounted INS characteristics. The magnetometer error characteristics and the foot-mounted INS mobility characteristics are used to develop a state equation and a magnetometer error measurement equation. An extended Kalman filter (EKF) is used for the online estimation and real-time calibration of the three-axis magnetometer errors with the zero velocity update (ZUPT) algorithm and a magnetic heading angle constraint algorithm for error constraint. The algorithm is validated by walking in a square playing ground. The results show that the online estimation and calibration algorithm reduce the end position error of the east direction from -110.7 to 1.8 m and the end position error of the north direction from 37.8 to 5.2 m compared to the system without calibration. This algorithm provides online calibration of magnetometer errors and significantly improves the positioning accuracy of pedestrian navigation.
Key wordspedestrian navigation    foot-mounted inertial navigation system (INS)    zero velocity update (ZUPT)    extended Kalman filter (EKF)    magnetometer calibration
收稿日期: 2015-05-26      出版日期: 2016-02-15
ZTFLH:  U666.1  
基金资助:中国第二代卫星导航系统重大专项(GFZX0301010516); 总装惯性技术预先研究项目(51309010301)
通讯作者: 张嵘, 研究员, E-mail: rongzh@mail.tsinghua.edu.cn     E-mail: rongzh@mail.tsinghua.edu.cn
作者简介: 张新喜(1980—), 男(汉), 湖北, 博士研究生。
引用本文:   
张新喜, 张嵘, 郭美凤, 程高峰, 牛树来. 基于足绑式INS的行人导航三轴磁强计在线校准[J]. 清华大学学报(自然科学版), 2016, 56(2): 211-217.
ZHANG Xinxi, ZHANG Rong, GUO Meifeng, CHENG Gaofeng, NIU Shulai. Online three-axis magnetometer calibration for a pedestrian navigation system using a foot-mounted inertial navigation system. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 211-217.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.011  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I2/211
  图1 磁强计误差在线辨识与校准算法结构框图
  图2 足绑式INS姿态角变化范围
  图3 基于EKF的三轴磁强计零偏估计值
  图4 仅使用ZUPT算法与GPS轨迹比较
  图5 磁强计未校准并进行航向角误差约束与GPS轨迹比较
  图6 磁强计零偏非实时校准与GPS轨迹比较
  图7 磁强计零偏实时辩识和校准与GPS轨迹比较
  表1   各种算法终点误差比较
[1] Bancroft J B, Lachapelle G. Estimating MEMS gyroscope g-sensitivity errors in foot mounted navigation [C]//Ubiquitous Positioning, Indoor Navigation, and Location Based Service. Piscataway, NJ: IEEE Press, 2012: 1-6.
[2] Borenstein J, Ojeda L, Kwanmuang S. Heuristic reduction of gyro drift for personnel tracking systems [J]. The Journal of Navigation, 2009, 62(1): 41-58.
[3] Zhang H, Yuan W, Shen Q, et al. A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition [J]. IEEE Sensors Journal, 2015, 15(3): 1421-1429.
[4] Grandvallet B, Zemouche A, Boutayeb M, et al. Real-time attitude-Independent three-axis magnetometer calibration for spinning projectiles: A sliding window approach [J]. IEEE Transactions on Control Systems Technology, 2014, 22(1): 255-264.
[5] 庞鸿锋, 潘孟春, 王伟, 等. 基于高斯牛顿迭代算法的三轴磁强计校正 [J]. 仪器仪表学报, 2013, 34(7): 67-72.PANG Hongfeng, PAN Mengchun, WANG Wei, et al. Error calibration of three axis magnetometer based on Gauss-Newton iteration algorithm [J]. Chinese Journal of Scientific Instrument, 2013, 34(7): 67-72. (in Chinese)
[6] 卢兆兴, 张金生, 王仕成, 等. 基于自适应遗传算法的三轴磁强计误差校正方法 [J]. 传感技术学报, 2014, 27(3): 331-336. LU Zhaoxing, ZHANG Jinsheng, WANG Shicheng, et al. Calibration for tri-axial magnetometer based on adaptive genetic algorithm [J]. Chinese Journal of Sensors and Actuators, 2014, 27(3): 331-336. (in Chinese)
[7] Beravs T, Begus S, Podobnik J, et al. Magnetometer calibration using Kalman filter covariance matrix for online estimation of magnetic field orientation [J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(8): 2013-2020.
[8] Fourati H. Heterogeneous data fusion algorithm for pedestrian navigation via foot-mounted inertial measurement unit and complementary filter [J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 221-229.
[9] Skog I, Nilsson J, Handel P. Evaluation of zero-velocity detectors for foot-mounted inertial navigation systems [C]//IEEE IPIN2010. Piscataway, NJ: IEEE Press, 2010: 1-6.
[10] Bebek O, Suster M A, Rajgopal S, et al. Personal navigation via high-resolution gait-corrected inertial measurement units [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(11): 3018-3027.
[11] Zhou C M, Downey J, Choi J, et al. A shoe-embedded RF sensor for motion detection [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(3): 169-171.
[12] Caruso M J. Applications of magnetic sensors for low cost compass systems [C]//2000 IEEE Position Location and Navigation Symposium. Piscataway, NJ: IEEE Press, 2000: 1-8.
[13] 郭美凤, 林思敏, 周斌, 等. MINS/GPS一体化紧组合导航系统 [J]. 中国惯性技术学报, 2011, 19(2): 214-219.GUO Meifeng, LIN Simin, ZHOU Bin, et al. MINS/GPS tightly-coupled integrated navigation system [J]. Journal of Chinese Inertial Technology, 2011, 19(2): 214-219. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn