Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (6): 565-571    DOI: 10.16511/j.cnki.qhdxxb.2016.22.013
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
轴系的热膨胀对于锥齿轮错位量的影响
田程1, 周驰1, 丁炜琦2, 桂良进1, 范子杰1
1. 清华大学 汽车工程系, 汽车安全与节能国家重点实验室, 北京 100084;
2. 陕西汉德车桥有限公司, 西安 710201
Influence of the thermal expansion of a shaft on the misalignment of bevel gears
TIAN Cheng1, ZHOU Chi1, DING Weiqi2, GUI Liangjin1, FAN Zijie1
1. State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China;
2. Shaanxi Hande Axle Co., Ltd, Xi'an 710201, China
全文: PDF(1108 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 错位量对锥齿轮传动性能影响显著, 而轴系的热膨胀会影响传动系统刚度, 进而影响错位量。该文针对现有锥齿轮校核和分析时没有考虑轴系的热膨胀对错位量的影响这一问题, 详细推导了热膨胀与轴承刚度、轴系变形之间的关系, 建立了一种考虑热膨胀的锥齿轮传动系统非线性有限元模型, 并用于计算锥齿轮错位量。算例结果表明, 热膨胀会使锥齿轮错位量减小。进一步研究了不同工作温度下错位量的变化情况, 结果表明, 系统工作温度越高, 热膨胀的影响越明显。该研究为锥齿轮校核和分析中如何考虑和利用热膨胀提供了依据, 对其他传动系统的分析也具有一定借鉴意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田程
周驰
丁炜琦
桂良进
范子杰
关键词 锥齿轮错位量热膨胀有限元方法轴承刚度系统变形    
Abstract:Misalignment can significantly impact the force transmission in bevel gears. The thermal expansion of the shaft can impact the stiffness of the transmission system which further influences the misalignment. The effect of the thermal expansion of the shaft on the misalignment is given by a relationship between the thermal expansion and the bearing stiffness and shaft system deformation. A non-linear finite element model is built to model a bevel gear transmission system with the thermal expansion to calculate the bevel gear misalignment. The results show that the thermal expansion reduces the bevel gear misalignment with higher working temperatures giving greater thermal expansion effects. The results describe how to use the expansion effect for bevel gear rating and design.
Key wordsmisalignments of bevel gears    thermal expansion    finite element method    bearing stiffness    system deformation
收稿日期: 2015-04-27      出版日期: 2016-07-01
ZTFLH:  TH132  
通讯作者: 范子杰, 教授, E-mail: zjfan@tsinghua.edu.cn     E-mail: zjfan@tsinghua.edu.cn
引用本文:   
田程, 周驰, 丁炜琦, 桂良进, 范子杰. 轴系的热膨胀对于锥齿轮错位量的影响[J]. 清华大学学报(自然科学版), 2016, 56(6): 565-571.
TIAN Cheng, ZHOU Chi, DING Weiqi, GUI Liangjin, FAN Zijie. Influence of the thermal expansion of a shaft on the misalignment of bevel gears. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 565-571.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.013  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I6/565
  图1 汽车主减速器
  图2 轴承局部坐标系
  图3 滚子切片示意图
  图4 锥齿轮简化模型
  图5 锥齿轮错位量定义
  表1 准双齿面齿轮基本参数
  表2 热膨胀对错位量的影响
  表3 不同温度下错位量的计算结果
  图6 不同轴承温度下综合错位量的计算结果
[1] The Gleason Works. Bending and Contact Stresses in Hypoid Gear Teeth [R]. New York: The Gleason Works, 1981.
[2] 苏进展, 方宗德. 弧齿锥齿轮印痕稳定性优化设计与试验 [J]. 航空动力学报, 2012, 27(11): 2622-2628.SU Jinzhan, FANG Zongde. Optimization design and test of stability of contact patterns of spiral bevel gears [J]. Journal of Aerospace Power, 2012, 27(11): 2622-2628. (in Chinese)
[3] 刘光磊, 张瑞庭, 赵宁, 等. 安装误差对航空弧齿锥齿轮传动误差曲线的影响分析[J]. 航空发动机, 2012, 38(2): 32-35.LIU Guanglei, ZHANG Ruiting, ZHAO Ning, et al. Effect of installation error on transmission error curve for aero spiral bevel gears [J]. Aeroengine, 2012, 38(2): 32-35. (in Chinese)
[4] 田久良, 洪军, 朱永生, 等. 机床主轴-轴承系统热-力耦合模型及其动态性能研究 [J]. 西安交通大学学报, 2012, 46(7): 63-68.TIAN Jiuliang, HONG Jun, ZHU Yongsheng, et al. Thermo-mechanical coupling model and dynamical characteristics of machining spindle-bearing system [J]. Journal of Xi'an Jiaotong University, 2012, 46(7): 63-68. (in Chinese)
[5] 国家机械工业局. 汽车驱动桥台架试验方法: QC-T 533—1999 [S]. 北京: 中国标准出版社, 1999.State Administration of Machinery Industry. Automotive Drive Axle Bench Test Method: QC-T 533—1999 [S]. Beijing: Standards Press of China, 1999. (in Chinese)
[6] 冯喜成, 张步良, 杨建军. 驱动桥支撑刚性对齿轮啮合特性的影响分析 [J]. 汽车技术, 2010(8): 20-23.FENG Xicheng, ZHANG Buliang, YANG Jianjun. Analysis on effects of driving axle support rigidity on gear engagement characteristic [J]. Automobile Technology, 2010(8): 20-23. (in Chinese)
[7] 刘显军, 洪军, 朱永生, 等. 多支承轴系轴承受力与刚度的有限元迭代计算方法 [J]. 西安交通大学学报, 2010, 44(11): 41-45.LIU Xianjun, HONG Jun, ZHU Yongsheng, et al. Iterative method to solve bearing's force and stiffness for a multi-support spindle system based on finite element analysis [J]. Journal of Xi'an Jiaotong University, 2010, 44(11): 41-45. (in Chinese)
[8] Demirhan N, Kanber B. Stress and displacement distributions on cylindrical roller bearing rings using FEM [J]. Mechanics Based Design of Structures and Machines, 2008, 36(1): 86-102.
[9] Guo Y, Parker R G. Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model [J]. Mechanism and Machine Theory, 2012, 51: 32-45.
[10] Harris T, Kotzalas M. 滚动轴承分析 [M]. 5版. 罗继伟, 马伟, 杨咸启, 等, 译. 北京: 机械工业出版社, 2010.Harris T, Kotzalas M. Rolling Bearing Analysis [M]. 5th Ed. LUO Jiwei, MA Wei, YANG Xianqi, et al. trans. Beijing: China Machine Press, 2010. (in Chinese)
[11] Lim T, Singh R. Vibration transmission through rolling element bearings, part I: Bearing stiffness formulation [J]. Journal of Sound and Vibration, 1990, 139(2): 179-199.
[12] 程尧舜. 弹性力学基础 [M]. 上海: 同济大学出版社, 2009.CHENG Yaoshun. Elastic Mechanics Basis [M]. Shanghai: Tongji University Press, 2009. (in Chinese)
[1] 陶润, 侯之超. 发动机前端附件带传动系统功率损失的仿真分析[J]. 清华大学学报(自然科学版), 2015, 55(7): 790-796.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn