Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (6): 617-621    DOI: 10.16511/j.cnki.qhdxxb.2016.22.021
  精密仪器 本期目录 | 过刊浏览 | 高级检索 |
残余奥氏体含量涡流检测仿真与特征提取
韩赞东, 李永杰, 李晓阳
清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084
Simulation and feature extraction of eddy current tests for residual austenite content
HAN Zandong, LI Yongjie, LI Xiaoyang
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1100 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 钢中残余奥氏体对材料的机械性能及热稳定性有很大的影响, 由于奥氏体相的相对磁导率远小于铁磁性相, 而相对磁导率是影响涡流检测的重要因素, 因此可以采用涡流检测的方法对钢中残余奥氏体的含量进行检测。利用有限元分析方法对不同相对磁导率的试样进行涡流检测仿真, 仿真结果表明: 交流电桥的输出信号的幅值和相位与试样的相对磁导率有很好的对应关系, 输出信号的幅值和相位可以作为特征量, 与经过适当处理的相对磁导率有很好的线性相关性。利用相对磁导率与残余奥氏体含量的关系即可实现对残余奥氏体含量的检测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩赞东
李永杰
李晓阳
关键词 涡流检测仿真特征提取残余奥氏体    
Abstract:Residual austenite content in steel strongly influences the mechanical properties and thermal stability of the materials. Eddy current testing method is used to determine the residual austenite content in the steel since the relative permeability of the austenite phase, which is indicated by eddy current tests, is much smaller than that of the ferromagnetic phases. A finite element analysis method is used to simulate eddy current tests with samples having different relative permeabilities. The results show that the output signal of the alternating current (AC) bridge corresponds well with the relative permeability. The amplitude and phase of the output signal can be used as feature variables, which both having good linear correlation with the relative permeability that after processing. The residual austenite content can then be determined using the relationship between the austenite content and the relative permeability.
Key wordseddy current testing    simulation    feature extraction    residual austenite
收稿日期: 2015-12-02      出版日期: 2016-06-15
ZTFLH:  TG115.28  
引用本文:   
韩赞东, 李永杰, 李晓阳. 残余奥氏体含量涡流检测仿真与特征提取[J]. 清华大学学报(自然科学版), 2016, 56(6): 617-621.
HAN Zandong, LI Yongjie, LI Xiaoyang. Simulation and feature extraction of eddy current tests for residual austenite content. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 617-621.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.021  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I6/617
  图1 涡流检测原理图
  图2 基本测量电路
  图3 检测线圈与试样的模型简化
  图4 磁场模块的仿真建模
  表1 各种材料的电磁属性
  表2 线圈参数设置
  图5 不同相对磁导率条件下的磁场分布
  图6 输出信号的幅值和相位与相对磁导率的关系
  图7 输出信号的幅值和相位与对数相对磁导率的关系
[1] 任吉林, 林俊明, 徐可北. 涡流检测 [M]. 北京: 机械工业出版社, 2013.REN Jilin, LIN Junming, XU Kebei. Eddy Current Testing [M]. Beijing: Mechanical Industry Press, 2013. (in Chinese)
[2] Zhao L, Van Dijk N H, Brück E, et al. Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels [J]. Materials Science and Engineering: A, 2001, 313(1): 145-152.
[3] 于霞, 张卫民, 邱忠超, 等. 航空发动机涡轮叶片裂纹检测信号特征提取 [J]. 兵工学报, 2014, 35(8): 1267-1274.YU Xia, ZHANG Weimin, QIU Zhongchao, et al. Signal feature extraction of aero-engine turbine blade crack detection [J]. Acta Armamentarii, 2014, 35(8): 1267-1274. (in Chinese)
[4] Al-Qubaa A R, Tian G Y, Wilson J, et al. Feature extraction using normalized cross-correlation for pulsed eddy current thermographic images [J]. Measurement Science and Technology, 2010, 21(11), 115501.
[5] Rosado L S, Janeiro F M, Ramos P M, et al. Defect characterization with eddy current testing using nonlinear-regression feature extraction and artificial neural networks [J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(5): 1207-1214.
[6] 何赟泽. 脉冲涡流无损检测技术研究 [D]. 长沙: 国防科学技术大学, 2008.HE Yunze. Research on the Pulsed Eddy Current Nondestructive Technology [D]. Changsha: National University of Defense Technology, 2008. (in Chinese)
[7] 王春艳, 陈铁群, 张欣宇. 脉冲涡流检测技术的某些进展[J]. 无损探伤, 2005, 29(4): 1-4.WANG Chunyan, CHEN Tiequn, ZHANG Xinyu. Some progress on pulsed eddy current testing technology [J]. Nondestructive Test, 2005, 29(4): 1-4. (in Chinese)
[8] 吴化, 姜颖, 尤申申, 等. 超级贝氏体组织中残余奥氏体的 TRIP 效应研究 [J]. 机械工程学报, 2014, 50(22): 69-75. WU Hua, JIANG Ying, YOU Shenshen, et al. Study on TRIP effect of retained austenite in super-bainite microstructure [J]. Journal of Mechanical Engineering, 2014, 50(22): 69-75. (in Chinese)
[9] 任勇强, 谢振家, 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响 [J]. 金属学报, 2012, 48(9): 1074-1080.REN Yongqiang, XIE Zhenjia, SHANG Chengjia. Regulation of retained austenite and its effect on the mechanical properties of low carbon steel [J]. Acta Metallurgica Sinica, 2012, 48(9): 1074-1080. (in Chinese)
[10] 张一, 张骥华, 徐祖耀. 钢中残余奥氏体的作用及其分析方法 [J]. 上海金属, 1983, 5(4): 33-40.ZHANG Yi, ZHANG Jihua, XU Zuyao. Effect and its analytical methods of retained austenite in steels [J]. Shanghai Metals, 1983, 5(4): 33-40. (in Chinese)
[11] 李晓阳, 韩赞东, 王柄方. 基于磁性法的钢中残余奥氏体含量测定方法与装置 [J]. 理化检验: 物理分册, 2014, 50(12): 882-889.LI Xiaoyang, HAN Zandong, WANG Bingfang. Measurement method and equipment of residual austenite content in steel based on magnetic method [J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2014, 50 (12): 882-889. (in Chinese)
[12] 张玉华, 李建增, 孙慧贤, 等. 影响磁导率测试的电磁检测探头设计因素分析 [J]. 传感器与微系统, 2013, 32(5): 47-50.ZHANG Yuhua, LI Jianzeng, SUN Huixian, et al. Analysis of design factors of electromagnetic probe effects on magnetic permeability measurement [J]. Transducer and Microsystem Technologies, 2013, 32(5): 47-50. (in Chinese)
[13] 孙金立, 袁英民, 陈新波. 放置式涡流检测传感器的设计与制作 [J]. 青岛大学学报: 自然科学版, 2002, 15(3): 70-74.SUN Jinli, YUAN Yingmin, CHEN Xinbo. Design and manufacture of point probe type eddy current test transducer [J]. Journal of Qingdao University: Natural Science Edition, 2002, 15(3): 70-74. (in Chinese)
[1] 李其奋, 王旸旸, 李冠宇, 王瑞浩, 徐明伟. 基于多台可编程交换机的网络拓扑仿真与性能评估[J]. 清华大学学报(自然科学版), 2024, 64(4): 659-667.
[2] 王斌, 张继文, 吴丹. 基于机器人建模的航空装配测控仿真分析方法[J]. 清华大学学报(自然科学版), 2024, 64(4): 724-737.
[3] 张名芳, 李桂林, 吴初娜, 王力, 佟良昊. 基于轻量型空间特征编码网络的驾驶人注视区域估计算法[J]. 清华大学学报(自然科学版), 2024, 64(1): 44-54.
[4] 刘安邦, 陈曦, 赵千川, 李博睿. 地铁线路储能装置与牵引装置联合优化配置方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1408-1414.
[5] 莫毅, 陈璠, 许笑颜, 焦哲, 卫刚, 林宏军, 肖为, 王方, 任祝寅. 航空发动机燃烧室两相湍流燃烧建模与仿真[J]. 清华大学学报(自然科学版), 2023, 63(4): 670-680.
[6] 王广兴, 房冠辉, 李健, 刘涛, 何青松, 贾贺. 攻角效应对降落伞拉直过程影响的仿真模拟[J]. 清华大学学报(自然科学版), 2023, 63(3): 311-321.
[7] 刘宇, 赵淼, 张章, 贾贺, 黄伟. 锥形减速结构流场热化学非平衡仿真[J]. 清华大学学报(自然科学版), 2023, 63(3): 386-393,413.
[8] 陈天元, 周钰颖, 高安. 借助光刻成像仿真软件的μDBO穿线套刻标记[J]. 清华大学学报(自然科学版), 2023, 63(12): 2057-2075.
[9] 张树卿, 唐绍普, 于思奇, 卢洵, 张东辉. 变流器组网多时间尺度特性及其模型分细度仿真应用[J]. 清华大学学报(自然科学版), 2023, 63(1): 78-93.
[10] 樊志强, 赵争鸣, 施博辰, 虞竹珺, 郑嘉霖. 基于DSIM仿真的多端口电力电子变压器损耗分析[J]. 清华大学学报(自然科学版), 2023, 63(1): 94-103.
[11] 程恒, 周秋景, 娄诗建, 张国新, 刘毅, 雷峥琦. 石坝河水库堆石混凝土重力坝施工期工作性态仿真[J]. 清华大学学报(自然科学版), 2022, 62(9): 1408-1416.
[12] 杨宏宇, 张梓锌, 张良. 基于并行特征提取和改进BiGRU的网络安全态势评估[J]. 清华大学学报(自然科学版), 2022, 62(5): 842-848.
[13] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[14] 孙悦, 何可, 张执南. 多源信息拟合摩擦系数的回归集成模型[J]. 清华大学学报(自然科学版), 2022, 62(12): 1980-1988.
[15] 赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11): 1772-1779.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn