Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (6): 661-665    DOI: 10.16511/j.cnki.qhdxxb.2016.22.029
  航天航空 本期目录 | 过刊浏览 | 高级检索 |
加力燃油离心泵关死点工况引射冷却分析
范红雨1,2, 陆奇志1, 龚景松1, 朴英1
1. 清华大学 航天航空学院, 北京 100084;
2. 第二炮兵指挥学院, 武汉 430012
Analysis of ejection-cooling at the shut-off operating condition for a reheat fuel centrifugal pump
FAN Hongyu1,2, LU Qizhi1, GONG Jingsong1, PIAO Ying1
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
2. Second Artillery Command College of PLA, Wuhan 430012, China
全文: PDF(1497 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对加力燃油离心泵关死点工况存在燃油温升高的问题, 采用从泵入口引入一小股旁路燃油引射冷却叶轮腔室的设计。运用Reynolds时均(RANS)方法, 结合剪切应力输运(SST)湍流模型和Rayleigh-Plesset空化模型, 对加力燃油离心泵引射冷却降温进行了分析。结果表明: 采用旁路燃油引射冷却叶轮腔室的设计, 可以有效解决加力燃油离心泵关死点工况燃油温升高的问题。采用引射装置的加力燃油离心泵, 在叶轮中心存在气心, 使加力燃油离心泵消耗的功率减小, 叶轮摩擦产生的热量也变小, 因此燃油温升降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范红雨
陆奇志
龚景松
朴英
关键词 加力燃油离心泵关死点工况引射冷却数值分析    
Abstract:The high fuel temperature rise at the shut-off operating condition in a reheat fuel centrifugal pump is addressed by cooling the impeller by fuel flowing through a by-pass from the pump inlet. The ejection-cooling is analyzed using the Reynolds average Navier-Strokes (RANS) method with the shear stress transport (SST) turbulence model and the Rayleigh-Plesset cavitation model. The results show that the ejection-cooling design can reduce the high fuel temperature rise at the shut-off condition. The power consumption and the friction heat are both reduced in the reheat fuel centrifugal pump with the ejection-cooling device because of the vapor core region in the impeller central zone which reduces the fuel temperature rise.
Key wordsreheat fuel centrifugal pump    shut-off operating condition    ejection-cooling    numerical analysis
收稿日期: 2015-12-02      出版日期: 2016-07-01
ZTFLH:  V233.2  
通讯作者: 朴英, 教授, E-mail: piaoying@tsinghua.edu.cn     E-mail: piaoying@tsinghua.edu.cn
引用本文:   
范红雨, 陆奇志, 龚景松, 朴英. 加力燃油离心泵关死点工况引射冷却分析[J]. 清华大学学报(自然科学版), 2016, 56(6): 661-665.
FAN Hongyu, LU Qizhi, GONG Jingsong, PIAO Ying. Analysis of ejection-cooling at the shut-off operating condition for a reheat fuel centrifugal pump. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 661-665.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.029  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I6/661
  图1 加力燃油离心泵几何模型
  图2 求解计算域网格模型
  表1 网格单元数
  表2 仿真值与实验值的比较
  图3 两种离心泵结构比较
  图4 引射器结构示意图
  图5 5%额定流量时加力燃油离心泵燃
油蒸气体积分数云图
[1] 张天翼. 高速离心泵内流场仿真与减重设计 [D]. 北京: 清华大学, 2011.ZHANG Tianyi. Numerical Simulation of Flow Field and Weight Loss Design for High Speed Centrifugal Pumps [D]. Beijing: Tsinghua University, 2011. (in Chinese)
[2] 张绍基. 军用航空发动机燃油与控制系统的研究和发展 [J]. 航空发动机, 2000, 27(3): 14-27.ZHANG Shaoji. Research and development of fuel and control system for military aeroengine [J]. Aeroengine, 2000, 27(3): 14-27. (in Chinese)
[3] 刘尚勤. 离心泵用作航空发动机主燃油泵研究 [J]. 航空发动机, 2006, 33(2): 43-45.LIU Shangqin. Investigation of centrifugal pump used as aeroengine main fuel pump [J]. Aeroengine, 2006, 33(2): 43-45. (in Chinese)
[4] 关醒凡, 商明华, 张青民. 泵允许的最小运转流量确定方法 [J]. 通用机械, 2011, 10(1): 102-103.GUAN Xingfan, SHANG Minghua, ZHANG Qingmin. The method for determining pump minimum flow [J]. General Machinery, 2011, 10(1): 102-103. (in Chinese)
[5] 李培华, 戴云鹤, 曹利, 等. 炉水循环泵电机腔室温升异常的原因分析及对策 [J]. 电力科学与工程, 2010, 26(6): 55-58.LI Peihua, DAI Yunhe, CAO Li, et al. The analysis for causes and the measures for the abnormal temperature rise in boiler circulating pump motor chamber [J]. Electric Power Science and Engineering, 2010, 26(6): 55-58. (in Chinese)
[6] 崔虹, 何建设. 泵机组循环试验介质温升分析 [J]. 油气储运, 2004, 23(1): 26-28.CUI Hong, HE Jianshe. The analysis of medium temperature rise in pump assembly cyclic test [J]. Oil and Gas Storage and Transportation, 2004, 23(1): 26-28. (in Chinese)
[7] 王福军. 计算流体动力学分析: CFD软件原理及应用 [M].北京: 清华大学出版社, 2004.WANG Fujun. Dynamic Analysis of the Computational Fluid Mechanics: CFD Software Principle and Application [M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
[8] 薛梅新. 加力燃油泵隔舌空化机理及抑制方法研究 [D]. 北京: 清华大学, 2012.XUE Meixin. Investigation on Cavitation Mechanism and Suppression Method Close to an Afterburning Fuel Pump Casing Tongue [D]. Beijing: Tsinghua University, 2012. (in Chinese)
[9] Menter F R. Two equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598-1605.
[10] Brennen C E. Cavitation and Bubble Dynamics [M]. Oxford: Oxford University Press, 1995.
[11] Rayleigh O M. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. Philosophical Magazine Series 6, 1917, 34(200): 94-98.
[12] Plesset M S. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics, 1949, 16(3): 227-282.
[13] Basker U M. Development of some unconventional centrifugal pumps [J]. Proceedings of the Institution of Mechanical Engineers, 1960, 174(1): 437-461.
[14] 赵静野, 孙厚钧, 高军. 引射器基本工作原理及其应用 [J]. 北京建筑工程学院学报, 2001, 16(4): 12-15.ZHAO Jingye, SUN Houjun, GAO Jun. The fundamental theory and employment of ejector mixer [J]. Journal of Beijing Institute of Civil Engineering and Architecture, 2001, 16(4): 12-15. (in Chinese)
[15] 李立国, 张靖周. 航空用引射混合器 [M]. 北京: 国防工业出版社, 2007.LI Liguo, ZHANG Jingzhou. Aeronautic Ejector Mixer [M]. Beijing: National Defence Industry Press, 2007. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn