Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (10): 1037-1041,1046    DOI: 10.16511/j.cnki.qhdxxb.2016.22.035
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
2219铝合金VPTIG焊接残余应力的数值分析
李艳军1, 吴爱萍1, 刘德博2, 赵海燕1, 赵玥1, 王国庆3
1. 清华大学 机械工程系, 摩擦学国家重点实验室, 先进成形制造教育部重点实验室, 北京 100084;
2. 北京宇航系统工程研究所, 北京 100076;
3. 中国运载火箭技术研究院, 北京 100076
Numerical simulations of welding residual stresses in VPTIG-welded joints of the 2219 aluminum alloy
LI Yanjun1, WU Aiping1, LIU Debo2, ZHAO Haiyan1, ZHAO Yue1, WANG Guoqing3
1. Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China;
3. China Academy of Launch Vehicle Technology, Beijing 100076, China
全文: PDF(1944 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 2219铝合金经过焊接后出现了严重的软化,为了阐明焊后软化对焊接残余应力计算精度的影响,采用热-弹-塑性有限元计算方法模拟了2219铝合金平板变极性惰性气体保护对接单道焊时的温度场和应力场,并考虑了加工硬化和退火效应的影响。结果表明:软化现象对焊接残余应力的计算结果有显著影响,不考虑焊后软化时会高估焊缝区及其附近的残余应力水平。通过对比计算结果与实验测量结果可知,综合考虑加工硬化、退火效应及接头软化的情况下,数值模拟结果与实测结果吻合较好,说明该数值模拟方法具有较高的计算精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李艳军
吴爱萍
刘德博
赵海燕
赵玥
王国庆
关键词 残余应力2219铝合金热-弹-塑性有限元方法焊接    
Abstract:2219 aluminum alloy welded joints have significantly reduced strength because of the softening during welding. The influence of joint softening on the welding residual stress was studied using the thermal elastic plastic finite element method (T-E-P FEM) to predict the welding temperature and residual stresses in a variable polarity tungsten inert gas (VPTIG) welded 2219 aluminum alloy joint. The influences of work hardening and the annealing were also examined. The simulations show that joint softening significantly influences the longitudinal residual stress and that the longitudinal residual stresses in the weld zone and nearby regions are overestimated when the joint softening is not taken into account. Comparison of the simulated results with measured data shows that when work hardening, annealing and joint softening are considered, the residual stresses predicted by the T-E-P FEM agree well with the measured data, which indicates that this approach can accurately predict residual welding stresses in 2219 aluminum alloy.
Key wordsresidual stresses    2219 aluminum alloy    thermal elastic plastic finite element method    welding
收稿日期: 2016-03-23      出版日期: 2016-10-25
ZTFLH:  TG404  
通讯作者: 吴爱萍,教授,E-mail:wuaip@mail.tsinghua.edu.cn     E-mail: wuaip@mail.tsinghua.edu.cn
引用本文:   
李艳军, 吴爱萍, 刘德博, 赵海燕, 赵玥, 王国庆. 2219铝合金VPTIG焊接残余应力的数值分析[J]. 清华大学学报(自然科学版), 2016, 56(10): 1037-1041,1046.
LI Yanjun, WU Aiping, LIU Debo, ZHAO Haiyan, ZHAO Yue, WANG Guoqing. Numerical simulations of welding residual stresses in VPTIG-welded joints of the 2219 aluminum alloy. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1037-1041,1046.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.035  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I10/1037
  图有限元模型
  图热源形状示意图
  图材料性能随温度变化
  表室温下不同区域的应变强化系数[4]
  表4个计算案例的条件设定
  图温度场分布云图
  图峰值温度沿横向分布
  图不同条件下中央横截面的纵向残余应力分布
  图纵向残余应力沿横向分布(x=150)
  图中央横截面的等效塑性应变分布云图
[1] Muraca R F, Whittick J S. Materials Data Handbook:Aluminum Alloy 2219 [R]. Washington, DC:NASA Marshall Spance Flight Center, 1972.
[2] 张海波. 几种典型铝合金焊接热裂纹敏感性对比研究[D]. 北京:清华大学, 2008.ZHANG Haibo. A Study on the Susceptibility of Welding Hot Cracking in Several Typical Al-Based Alloys [D]. Beijing:Tsinghua University, 2008. (in Chinese)
[3] 李权. 2219铝合金熔化焊接头力学性能薄弱区研究 [D]. 北京:清华大学, 2015. LI Quan. Investigation on the Weakness Region of the Fusion Welded Joints of 2219 Aluminum Alloy [D]. Beijing:Tsinghua University, 2015. (in Chinese)
[4] LI Yanjun, LI Quan, WU Aiping, et al. Determination of local constitutive behavior and simulation on tensile test of 2219-T87 aluminum alloy GTAW joints [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9):3072-3079.
[5] Rao S R K, Reddy G M, Rao P S, et al. Improving mechanical properties of 2219 aluminium alloy GTA welds by scandium addition [J]. Science and Technology of Welding and Joining, 2005, 10(4):418-426.
[6] 杜辉. 时效对2219铝合金VPTIG焊接结构性能影响研究[D]. 天津:天津大学, 2012.DU Hui. Study on the Influences of Aging on Performance Variable Polarity TIG Welded Structure of 2219 Aluminum Alloy [D]. Tianjin:Tianjin University, 2012. (in Chinese)
[7] DING Jikun, WANG Dongpo, WANG Ying, et al. Effect of post weld heat treatment on properties of variable polarity TIG welded AA2219 aluminium alloy joints [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(5):1307-1316.
[8] LI Quan, WU Aiping, LI Yanjun, et al. Influence of temperature cycles on the microstructures and mechanical properties of the partially melted zone in the fusion welded joints of 2219 aluminum alloy [J]. Mataterials Science and Engineering A, 2015, 623:38-48.
[9] 邓德安, Kiyoshima S. 退火温度对SUS304不锈钢焊接残余应力计算精度的影响[J]. 金属学报, 2014, 50(5):626-632.DENG Dean, Kiyoshima S. Influence of annealing temperature on calculation accuracy of welding residual stress in a SUS304 stainless steel joint [J]. Acta Metallurgica Sinica, 2014, 50(5):626-632. (in Chinese)
[10] 张增磊, 史清宇, 刘园, 等. 焊接数值模拟材料新模型的建立及应用[J]. 焊接学报, 2009, 30(2):45-48.ZHANG Zenglei, SHI Qingyu, LIU Yuan, et al. Establishment and application of material models for numerical simulation of welding process [J]. Transactions of the China Welding Institution, 2009, 30(2):45-48. (in Chinese)
[11] Kaufman J G. Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures [M]. Materials Park, OH: ASM International, 1999.
[12] Meng Q G, Fang H Y, Yang J G, et al. Analysis of temperature and stress field in Al alloy's twin wire welding [J]. Theoretical and Applied Fracture Mechanics, 2005, 44(2):178-186.
[13] Narender K, Rao A S M, Rao K G K, et al. Thermo physical properties of wrought aluminum alloys 6061, 2219 and 2014 by gamma ray attenuation method [J]. Thermochimica Acta, 2013, 569:90-96.
[14] 上田幸雄, 村川英一, 麻宁绪. 焊接变形和残余应力的数值计算方法与程序[M]. 成都:四川大学出版社, 2008.Ueda Y, Murakawa H, Ma N. Numerical Computation Method and Program for Welding Distortion and Residual Stress [M]. Chengdu:Sichuan University Press, 2008. (in Chinese)
[1] 曾锦乐, 都东, 常保华, 洪宇翔, 常树鹤, 潘际銮. 复杂空间轨迹焊接过程运动规划方法[J]. 清华大学学报(自然科学版), 2016, 56(10): 1031-1036.
[2] 朱志明, 范开果, 刘晗, 王永东. 低气压对自保护药芯焊丝电弧特性的影响[J]. 清华大学学报(自然科学版), 2015, 55(7): 734-738.
[3] 李轶非, 蔡志鹏, 汤之南, 潘际銮, 刘霞, 孙林根. 焊接接头低周疲劳性能薄弱区转移[J]. 清华大学学报(自然科学版), 2015, 55(10): 1056-1060,1066.
[4] 蔡志鹏, 王梁, 潘际銮, 乔尚飞, 霍鑫, 王朋, 刘霞. 回火冷却速度对贝氏体焊缝韧性的影响[J]. 清华大学学报(自然科学版), 2015, 55(10): 1045-1050.
[5] 蔡志鹏, 吴健栋, 汤之南, 张伯奇, 潘际銮, 刘霞. 汽轮机焊接转子接头低周疲劳过程损伤变量的复合分析法[J]. 清华大学学报(自然科学版), 2014, 54(2): 178-184.
[6] 赵海燕, 徐兴全, 于兴哲, 朱小武. 旋挖钻机钻杆键条焊接接头的残余应力[J]. 清华大学学报(自然科学版), 2014, 54(2): 191-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn