Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (10): 1114-1121    DOI: 10.16511/j.cnki.qhdxxb.2016.22.048
  航天航空 本期目录 | 过刊浏览 | 高级检索 |
冯光烁, 周明
清华大学 航天航空学院, 北京 100084
Assessment of heavy fuel aircraft piston engine types
FENG Guangshuo, ZHOU Ming
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1079 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 分析了重油航空活塞发动机的两条技术路线:点燃式(Otto循环)和压燃式(Diesel循环)。点燃式重油航空活塞发动机功重比较高,但是燃油消耗率高,存在爆震、起动困难、电磁兼容性较差、可靠性较低、功率覆盖范围较小等弱点。缸内直喷、气动喷嘴和高能点火技术是点燃式发动机需攻克的关键技术。压燃式重油航空活塞发动机燃油消耗率低、续航能力强、电磁兼容性较好、可靠性高、功率覆盖范围较大,但是功重比较低、振动较大。高功重比、先进电控及燃油喷射、可调高压比增压技术是压燃式发动机需攻克的关键技术。研究了目前重油航空活塞发动机的主要案例,结果表明:点燃式和压燃式方案均是可行的,且各有一些关键技术需要攻克,压燃式技术路线将是未来主流。
E-mail Alert
关键词 重油航空活塞发动机技术路线点燃式压燃式    
Abstract:The objective of this study is to assess spark ignition (Otto cycle) and compression ignition (Diesel cycle) engines as heavy fuel aircraft piston engines. Spark ignition aircraft engines give a higher power to weight ratio, but have higher specific fuel consumption (SFC), knocking, poor starting, higher electro magnetic interference (EMI), lower reliability and narrower power regions. Spark ignition systems use direct injection, pneumatic atomizers and high energy ignition systems. Compression ignition aircraft engines have lower SFC, improved range, lower EMI, higher reliability and wider power regions, but have worse power to weight ratios and more vibration. Compression ignition engines have advanced electronic controls, fuel injection systems and variable high-pressure ratio superchargers. The assessments show that both approaches are feasible with some technical challenges, with compression ignition engines as the more promising approach.
Key wordsheavy fuel aircraft piston engine    technical approach    spark ignition    compression ignition
收稿日期: 2015-12-03      出版日期: 2016-10-15
ZTFLH:  V234  
通讯作者: 周明,教授,     E-mail:
冯光烁, 周明. 重油航空活塞发动机技术路线分析[J]. 清华大学学报(自然科学版), 2016, 56(10): 1114-1121.
FENG Guangshuo, ZHOU Ming. Assessment of heavy fuel aircraft piston engine types. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1114-1121.
链接本文:  或
  图 国外重油航空活塞发动机功率覆盖范围和功重比
  表 国外重油航空活塞发动机及其主要性能参数
[1] Stewart W L, Weber R J, Willis E A, et al. NASA Research on General Aviation Power Plants [R]. AIAA 79-0561, 1979.
[2] Lawton J. Development of a Heavy Fuel Engine for an Unmanned Air Vehicle [R]. AIAA 90-2170, 1990.
[3] Kotsiopoulos P, Yfantis E, Lois E, et al. Diesel and JP-8 Fuel Performance on a Petter AV1 Diesel Engine [R]. AIAA 2001-0500, 2001.
[4] Weir D G. Strategic Implications for a Single-Fuel Concept [R]. AD-A308 981, 1996.
[5] Department of Defense. Directive 4140.25. DoD Management Policy of Energy Commodities and Related Service [R]. Department of Defense, USA, 2004.
[6] Senior NATO Logisticians' Conference (SNLC). NATO Logistics Handbook [R]. Brussels: North Atlantic Treaty Organization (NATO), 2007.
[7] Rozenkranc M, Ernst J. Tactical UAV Engines Integration in IAI [R]. AIAA 2003-6534, 2003.
[8] Palacios C F, Owens E C, Wood C D. Heavy Fuel Engine Technology Assessment [R]. AD-A337601, 1998.
[9] Glenn Research Center. Small Aircraft Propulsion: The Future Is Here [R]. NASA Facts FS-2000-04-001-GRC, 2000.
[10] 冯青, 李世武, 张丽. 工程热力学 [M]. 西安: 西北工业大学出版社, 2006. FENG Qing, LI Shiwu, ZHANG Li. Engineering Thermodynamics [M]. Xi'an: Northwestern Polytechnical University Press, 2006. (in Chinese)
[11] Suhy P J Jr, Morgan E J, Evers L W, et al. The Feasibility of a Kerosene Fueled Spark Ignited Two-Stroke Engine [R]. SAE Paper 911846, 1991.
[12] Falkowski D T, Abata D L, Cho P. The Performance of a Spark-Ignited Stratified-Charge Two Stroke Engine Operating on a Kerosene Based Aviation Fuel [R]. SAE Paper 972737, 1997.
[13] Cathcart G, Dickson G, Ahern S. The Application of Air-Assist Direct Injection for Spark-Ignited Heavy Fuel 2-Stroke and 4-Stroke Engines [R]. SAE Paper 2005-32-0065, 2005.
[14] Groenewegen J-R J, Litke P J, Wilson C W, et al. The Performance and Emissions Effects of Utilizing Heavy Fuels and Biodiesel in a Small Spark Ignition Internal Combustion Engine [R]. AIAA 2011-695, 2011.
[15] Lawton J, Maggio A, Brucato R. Unmanned Aerial Vehicle Heavy Fuel Engine Test [R]. AD-A284 332, 1993.
[16] McLanahan J C. Diesel Aircraft Engines: A Delayed Promise from the 1930's [R]. SAE Paper 1999-01-5583, 1999.
[17] Moynihan M E, Berenyi S G, Brouwers A P. An Update on High Output, Lightweight Diesel Engines for Aircraft Applications [R]. AIAA-83-1339, 1983.
[18] Brouwers A P. 150 and 300 kW Lightweight Diesel Aircraft Engine Design Study [R]. NASA Contractor Report 3260, 1980.
[19] Brouwers A P. 186 kW Lightweight Diesel Aircraft Engine Design Study [R]. NASA Contractor Report 3261, 1980.
[20] Brouwers A P. Lightweight Diesel Aircraft Engines for General Aviation [R]. AIAA-80-1238, 1980.
[21] Underwood S C. Performance and Emission Characteristics of an Aircraft Turbo Diesel Engine Using Jet-A Fuel [D]. Lawrence, KS, USA: University of Kansas, 2008.
[22] Weinzierl S, Wildemann R, Hanula B. The Design and Development of a Light-Weight High-Speed, Diesel Engine for Unmanned Aerial Vehicles [R]. SAE Paper 2002-01-0160, 2002.
[23] Fuchs M J, Weinzierl S M. Diesel Aircraft Engine. USA:7191742 B2. 2007.
[24] Widener S K, Gale N F, Boyer L, et al. A Heavy-Fueled Engine for Unmanned Aerial Vehicles [R]. SAE Paper 950773, 1995.
[1] 吕峥, 宋佳丽, 孙峙, 曹宏斌. 中国锂离子电池回收技术知识产权分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 551-557.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持