Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (7): 717-722    DOI: 10.16511/j.cnki.qhdxxb.2016.24.019
  化学与化学工程 本期目录 | 过刊浏览 | 高级检索 |
考虑提纯能耗的氢网络提纯优化
刘桂莲, 王颖佳
西安交通大学 化学工程与技术学院, 西安 710049
Optimization of a hydrogen network with consideration of the energy consumption for purification
LIU Guilian, WANG Yingjia
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(1019 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 由于环保法规的日益严格以及原油的重质化使得炼厂迫切需要降低新氢消耗,提纯回用可降低新氢消耗,但是提纯过程将增加能耗。为了权衡两者变化关系以确定系统最优提纯流量,该文根据概念法确定氢网络公用工程节省量和夹点随流量变化线,综合考虑变压吸附提纯的相关费用,做出节省新氢费用-流量线和提纯费用-流量线,通过图像分析法确定最优的提纯流量和临界提纯流量。应用此方法对某石化企业氢网络分析结果为:该系统的临界提纯流量为4.8 mol/s,最优提纯量为60.74 mol/s,最优提纯流量下,新氢节约量为29.03 mol/s,提纯后可节约费用 2.41×106 US$/a。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘桂莲
王颖佳
关键词 氢网络提纯能耗优化    
Abstract:Increasing stringent environmental regulations and the increased processing of inferior crude oils require that refineries reduce fresh hydrogen consumption. This can be achieved by purification of the hydrogen. However, the energy consumption for purification must be considered in the system. The study balances both factors to determine the optimal purification feed flow rate (PFFR). The pinch concept is used to relate the hydrogen utility savings (HUS) and the purification feed flow rate. The cost versus PFFR diagram includes the pressure swing adsorption (PSA) cost with an HUS cost versus PFFR line and a purification cost versus PFFR line to identify the optimal PFFR and the limiting PFFR. The hydrogen network of a petrochemical enterprise is optimized using this method with the results showing that the limiting PFFR is 4.8 mol/s, the optimal PFFR is 60.74 mol/s , and the annual cost can be decreased by 2.41×106 US$/a.
Key wordshydrogen network    purification    energy consumption    optimization
收稿日期: 2015-09-01      出版日期: 2016-07-22
ZTFLH:  TQ021.8  
基金资助:国家自然科学基金资助项目(21476180)
引用本文:   
刘桂莲, 王颖佳. 考虑提纯能耗的氢网络提纯优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 717-722.
LIU Guilian, WANG Yingjia. Optimization of a hydrogen network with consideration of the energy consumption for purification. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 717-722.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.24.019  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I7/717
  图1 夹点位于氢阱连接线
  图2 公用工程节省量与提纯量定量关系曲线
  图3 PSA 提纯操作费用与节省新氢费用的比较
  表1 氢源和氢阱数据
  图4 提纯量与公用工程节省量的简化关系图
  图5 费用与提纯量的关系图
[1] Alves J. Analysis and Design of Refinery Hydrogen Distribution Systems[D]. Manchester, UK:University of Manchester, 1999.
[2] LIU Fengru, ZHANG Nan. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research and Design, 2004, 82(10):1315-1330.
[3] Foo D C Y, Manan Z A. Setting the minimum utility gas flowrate targets using cascade analysis technique[J]. Industrial & Engineering Chemistry Research, 2006, 45(17):5986-5995.
[4] Ng D K S, Foo D C Y, Tan R R, et al. Automated targeting for conventional and bilateral property-based resource conservation network[J]. Chemical Engineering Journal, 2009, 149(1):87-101.
[5] Ng D K S, Foo D C Y, Tan R R. Automated targeting technique for single-impurity resource conservation networks. Part 1:Direct reuse/recycle[J]. Industrial & Engineering Chemistry Research, 2009, 48(16):7637-7646.
[6] Ng D K S, Foo D C Y, Tan R R. Automated targeting technique for single-impurity resource conservation networks. Part 2:Single-pass and partitioning waste-interception systems[J]. Industrial & Engineering Chemistry Research, 2009, 48(16):7647-7661.
[7] Ng D K S, Foo D C Y, Tan R R, et al. Automated targeting technique for concentration-and property-based total resource conservation network[J]. Computers & Chemical Engineering, 2010, 34(5):825-845.
[8] Nelson A M, Liu Y. Hydrogen-pinch analysis made easy[J]. Chemical Engineering, 2008, 115(6):56-61.
[9] Bandyopadhyay S. Source composite curve for waste reduction[J]. Chemical Engineering Journal, 2006, 125(2):99-110.
[10] ZHANG Qiao, FENG Xiao, LIU Guilian, et al. A novel graphical method for the integration of hydrogen distribution systems with purification reuse[J]. Chemical Engineering Science, 2011, 66(4):797-809.
[11] LIU Guilian, LI Hao, FENG Xiao, et al. A conceptual method for targeting the maximum purification feed flow rate of hydrogen network[J]. Chemical Engineering Science, 2013, 88(12):33-47.
[12] LIU Guilian, LI Hao, FENG Xiao, et al. Novel method for targeting the optimal purification feed flow rate of hydrogen network with purification reuse/recycle[J]. AIChE Journal, 2013, 59(6):1964-1980.
[13] LI Hao. A Novel Concept Method to Identify the Optimal Purification Flow Rate of the Hydrogen Network with Purification Reuse[D]. Xi'an:Xi'an Jiaotong University, 2012.
[14] JIA Nan, ZHANG Nan. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36(8):4663-4670.
[15] LIAO Zuwei, WANG Jingdai, YANG Yongrong, et al. Integrating purifiers in refinery hydrogen networks:A retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3):233-241.
[16] LIAO Zuwei, RONG Gang, WANG Jingdai, et al. Rigorous algorithmic targeting methods for hydrogen networks-Part I:Systems with no hydrogen purification[J]. Chemical Engineering Science, 2011, 66(5):813-820.
[17] DENG Chun, PAN Huaimin, LI Yantao, et al. Comparative analysis of different scenarios for the synthesis of refinery hydrogen network[J]. Applied Thermal Engineering, 2014, 70(2):1162-1179.
[18] Jagannath A, Almansoori A. Modeling of hydrogen networks in a refinery using a stochastic programming approach[J]. Industrial & Engineering Chemistry Research, 2014, 53(51):19715-19735.
[19] Towler G P, Mann R, Serriere A J L, et al. Refinery hydrogen management:cost analysis of chemically-integrated facilities[J]. Industrial & Engineering Chemistry Research, 1996, 35(7):2378-2388.
[20] Aden A, Foust T. Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol[J]. Cellulose, 2009, 16(4):535-45.
[1] 康凯, 陈涛, 袁宏永. 多层级应急救援协同调度模型[J]. 清华大学学报(自然科学版), 2016, 56(8): 830-835,843.
[2] 张继文, 刘莉, 陈恳. 小型仿人足球机器人MOS-7的系统设计及局部优化[J]. 清华大学学报(自然科学版), 2016, 56(8): 811-817.
[3] 孙智源, 陆化普. 考虑交通大数据的交通检测器优化布置模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 743-750.
[4] 邓春, 周业扬, 江苇, 冯霄. 耦合变压吸附简化模型的提纯回用氢网络协调优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 735-742.
[5] 肖武, 王开锋, 姜晓滨, 贺高红. 遗传-模拟退火算法优化设计管壳式换热器[J]. 清华大学学报(自然科学版), 2016, 56(7): 728-734.
[6] 谢颖, 杨向东, 芮晓飞, 任书楠, 陈恳. 圆柱透视投影轮廓的隐式方程描述和拟合方法[J]. 清华大学学报(自然科学版), 2016, 56(6): 640-645.
[7] 钟薇, 苏瑞意, 桂良进, 范子杰. 基于子结构方法的离散结构协同优化[J]. 清华大学学报(自然科学版), 2016, 56(6): 572-579.
[8] 付骁鑫, 江永亨, 黄德先, 王京春, 黄开胜. 基于最优计算量分配的公路轨迹规划[J]. 清华大学学报(自然科学版), 2016, 56(3): 273-280.
[9] 张书玮, 罗禹贡, 李克强. 动态交通环境下的纯电动车辆多目标出行规划[J]. 清华大学学报(自然科学版), 2016, 56(2): 130-136.
[10] 徐敬德, 崔慧娟, 唐昆. 结合信源和信道的多级矢量量化联合优化算法[J]. 清华大学学报(自然科学版), 2015, 55(8): 826-830.
[11] 刘哲, 金达锋, 范志瑞. 基于代理模型的复合材料带加强筋板铺层优化[J]. 清华大学学报(自然科学版), 2015, 55(7): 782-789.
[12] 沈婧楠, 王凌, 王圣尧. 求解分布式置换流水线调度问题的化学反应优化算法[J]. 清华大学学报(自然科学版), 2015, 55(11): 1184-1189,1196.
[13] 李培元, 顾春伟, 宋寅. 某MW级燃机低压离心压气机优化设计[J]. 清华大学学报(自然科学版), 2015, 55(10): 1110-1116.
[14] 张志强, 胡山鹰, 陈定江, 沈静珠, 杜风光. 燃料乙醇系统不确定性分析及优化[J]. 清华大学学报(自然科学版), 2014, 54(5): 643-648.
[15] 许述财, 邹猛, 魏灿刚, 王龙臻, 张金换, 于用军. 仿竹结构薄壁管的轴向耐撞性分析及优化[J]. 清华大学学报(自然科学版), 2014, 54(3): 299-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn