Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (7): 723-727    DOI: 10.16511/j.cnki.qhdxxb.2016.24.022
  化学与化学工程 本期目录 | 过刊浏览 | 高级检索 |
基于分子同系物向量表示的石脑油特征提取方法
梅华, 杜玉鹏, 王振雷, 钱锋
华东理工大学 化工过程先进控制和优化技术教育部重点实验室, 上海 200237
Naphtha characterization based on a molecular-type homologous series vector representation
MEI Hua, DU Yupeng, WANG Zhenlei, QIAN Feng
Key Laboratory of Advanced Control and Optimization for Chemical Processes of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
全文: PDF(1297 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 根据石脑油馏分的特点,提出一种同系物向量表征方法。该方法将石脑油内部的每一个同系物分子定义为一个状态变量,这些状态变量构成了一个多维的向量空间。因此,任意一种石脑油都对应着该向量空间内的一个点,并且能够由该向量空间内的一组相互独立的石脑油馏分(基础油品)线性表示。在此基础上,提出一种基于非负矩阵分解(non-negative matrix factorization, NMF)方法的基础油品选择方法。该方法将具有较高维数的石脑油样品数据矩阵分解为一个较低维数的特征矩阵及其系数矩阵。在研究实例中,从59组石脑油样本数据中可以提取出21组基础油品,并且由它们还原得到的石脑油模型与样本数据相比,其相对误差不超过原数据的2.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梅华
杜玉鹏
王振雷
钱锋
关键词 石脑油详细族组成分子同系物向量表示非负矩阵分解 (NMF)    
Abstract:A novel homologous series vector representation method was developed for naphtha in which each homologous molecule of naphtha is defined as a state variable and all these variables are then used to construct a high dimension vector space. Thus, any variation of naphtha as one point in this vector space can be blended linearly by a group of independent naphthas named Basis Oils. These basis oils are obtained using the non-negative matrix factorization (NMF) method with the components data matrix of a huge number of naphtha samples factorized into a characteristic matrix with a lower dimension and its coefficient matrix. In a case study, a naphtha model containing 21 groups of naphtha bases was extracted from 59 groups of naphtha samples with a maximum representation error of less than 2.5 percent of the original data.
Key wordsnaphtha    detailed group components    molecular-type homologous series vector representation    non-negative matrix factorization (NMF)
收稿日期: 2015-08-20      出版日期: 2016-07-22
ZTFLH:  TE622  
基金资助:国家自然科学基金重点基金资助项目(61333010);国家自然科学基金青年基金资助项目(21206037)
引用本文:   
梅华, 杜玉鹏, 王振雷, 钱锋. 基于分子同系物向量表示的石脑油特征提取方法[J]. 清华大学学报(自然科学版), 2016, 56(7): 723-727.
MEI Hua, DU Yupeng, WANG Zhenlei, QIAN Feng. Naphtha characterization based on a molecular-type homologous series vector representation. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 723-727.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.24.022  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I7/723
  图1 石脑油样品组成分布情况
  图2 基础油品组成分布情况
  图3 石脑油样品关于基础油品的混合系数分布情况
  图4 重构油品与样品组成误差分布
[1] Vendeuvre C, Bertoncini F, Duval J L, et al. Comparison of conventional gas chromatography and comprehensive two-dimensional gas chromatography for the detailed analysis of petrochemical samples[J]. Journal of Chromatography A, 2004, 1056(1-2):331-347.
[2] Qian K N, Dechert G J. Recent advances in petroleum characterization by GC field ionization time-of-flight high-resolution mass spectrometry[J]. Analytical Chemistry, 2002, 74(16):3977-3983.
[3] Pyl S P, Van Geem K M, Reyniers M, et al. Molecular reconstruction of complex hydrocarbon mixtures:An application of principal component analysis[J]. AIChE Journal, 2010, 56(12):3174-3188.
[4] Saine Aye M, Zhang N, A novel methodology in transforming bulk properties of refining streams into molecular information[J]. Chemical Engineering Science, 2005, 60(23):6702-6717.
[5] Van Geem K M, Hudebine D, Reyniers M F, et al. Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices[J]. Computers and Chemical Engineering, 2007, 31(9):1020-1034.
[6] Dente M, Ranzi E. Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation program (SPYRO)[J]. Computers and Chemical Engineering, 1979, 3(1-4):61-75.
[7] Speight J G. The Chemistry and Technology of Petroleum,[M]. 3rd Ed. New York, USA:Marcel Dekker, 1998.
[8] Riazi M R. Characterisation and Properties of Petroleum Fractions[M]. Philadelphia, USA:ASTM International, 2005.
[9] PENG Bin. Molecular Modeling of Refinery Process[D]. Manchester, UK:The University of Manchester, 1999.
[10] ZHANG Yan. A Molecular Approach for Characterization and Property Predictions of Petroleum Mixtures with Applications to Refinery Modeling[D]. Manchester, UK:The University of Manchester, 1999.
[11] Ahmad M I, Zhang N, Jobson M. Molecular components-based representation of petroleum fractions[J]. Chemical Engineering Research and Design, 2011, 89:410-420.
[12] Lee D, Seung H. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401:788-791.
[1] 邱彤, 陈金财, 方舟. 基于结构导向集总的石油馏分分子重构模型[J]. 清华大学学报(自然科学版), 2016, 56(4): 424-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn