Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (5): 530-537,543    DOI: 10.16511/j.cnki.qhdxxb.2016.25.012
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
动态不确定因果图用于复杂系统故障诊断
赵越1, 董春玲2, 张勤1,2
1. 清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084;
2. 清华大学 计算机科学与技术系, 北京 100084
Fault diagnostics using DUCG incomplex systems
ZHAO Yue1, DONG Chunling2, ZHANG Qin1,2
1. Key Laboratory of Advanced Reactor Engineering and Safety of the Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1202 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 商用核电站中的操作员在电站正常运行时需要密切监测核反应堆的运行状态。当故障发生时, 对核电站进行迅速、有效的故障诊断和对故障进行正确处理极为重要。该文介绍了动态不确定因果图(dynamic uncertain causality graph, DUCG)理论方法, 并将DUCG方法应用于核电站的故障诊断。以中国广核集团有限公司的宁德核电站1号机组CPR1000为原型建立了8类典型的二回路故障模型, 进行故障诊断验证和故障发展预测。同时, 应用该公司全配置仿真系统对每个故障进行了20次实际测试。验证和测试结果均表明: DUCG能够准确、快速、高效地进行故障诊断。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵越
董春玲
张勤
关键词 动态不确定因果图复杂系统故障诊断    
Abstract:The status of nuclear reactors in commercial nuclear power plants needs to be closely monitored to maintain normal operations. When a failure occurs, rapid and effective fault diagnostics and proper handling of failures is extremely important. This paper applies dynamic uncertain causality graph (DUCG) theory to fault diagnostics of nuclear power plants. The method was applied to a model with 8 typical second and loop faults based on the Ningde Nuclear Power Plant Unit 1 CPR1000 of the China Guangdong Nuclear Power Group (CGNPC) to verify the fault diagnostics and initial progression forecasts. Simulations were used to test each fault 20 times. The method and stimulator tests both showed that DUCG can accurately, quickly and efficiently diagnose faults.
Key wordsDUCG    complex system    fault diagnosis
收稿日期: 2015-09-17      出版日期: 2016-05-15
ZTFLH:  TL361  
通讯作者: 张勤, 教授, E-mail: qinzhang@tsinghua.edu.cn     E-mail: qinzhang@tsinghua.edu.cn
引用本文:   
赵越, 董春玲, 张勤. 动态不确定因果图用于复杂系统故障诊断[J]. 清华大学学报(自然科学版), 2016, 56(5): 530-537,543.
ZHAO Yue, DONG Chunling, ZHANG Qin. Fault diagnostics using DUCG incomplex systems. Journal of Tsinghua University(Science and Technology), 2016, 56(5): 530-537,543.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.25.012  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I5/530
  表1 变量定义
  图1 事件展开示意图
  表2 符号定义表
  表2 符号定义表(续表)
  图2 部分异常参数随时间变化
  图3 宁德1号机组的二回路故障诊断DUCG 图
  图4 拆减后因果图
  表3 故障发展预测表
  表4 诊断结果表
  表4 诊断结果表(续表)
[1] United States. President's Commission on the Accident at Three Mile Island. The Need for Change, the Legacy of TMI:Report of the President's Commission on the Accident at Three Mile Island[M]. Washington D C, USA:Government Printing Office, 1979.
[2] Rogovin M. Three Mile Island:A Report to the Commissioners and to the Public[R]. Washington D C,USA:Nuclear Regulatory Commission, 1979.
[3] ZHANG Qin. Dynamic uncertain causality graph for knowledge representation and reasoning:Discrete DAG cases[J].Journal of Computer Science and Technology, 2012,27(1):1-23.
[4] ZHANG Qin. Dynamic uncertain causality graph for knowledge representation and probabilistic reasoning:directed cyclic graph and joint probability distribution[J].IEEE Transactions on Neural Networks and Learning Systems, 2015,26(7):1503-1517.
[5] ZHANG Qin, DONG Chunling, CUI Yan, et al. Dynamic uncertain causality graph for knowledge representation and probabilistic reasoning:Statistics base, matrix, and application[J].IEEE Transactions on Neural Networks and Learning Systems, 2014,25(4):645-663.
[6] ZHANG Qin, GENG Shichao. Dynamic uncertain causality graph applied to dynamic fault diagnoses of large and complex systems[J].IEEE Transactions on Reliability, 2015,64(3):910-927.
[7] ZHANG Qin. Dynamic uncertain causality graph for knowledge representation and reasoning:Continuous variable, uncertain evidence, and failure forecast[J].IEEE Transactions on Systems, Man, and Cybernetics, 2015,45(7):990-1003.
[8] 赵越, 张勤, 邓宏琛, 等. DUCG在核电站二回路故障诊断中的应用[J]. 原子能科学技术, 2014,48(S1):496-501. ZHAO Yue, ZHANG Qin, DENG Hongchen, et al. Application of DUCG in fault diagnosis of nuclear power plant secondary loop[J].Atomic Energy Science and Technology, 2014,48(S1):496-501. (in Chinese)
[9] DONG Chunling, WANG Yanjun, ZHANG Qin, et al. The methodology of dynamic uncertain causality graph for intelligent diagnosis of vertigo[J].Computer Methods and Programs in Biomedicine, 2014,113(1):162-174.
[10] Nelson W R. Reactor:An expert system for diagnosis and treatment of nuclear reactor accidents[C]//Proceedings of the 2nd National Conference on Artificial Intelligence. Pittsburgh, USA:AAAI Press, 1982:296-301.
[11] 周刚, 杨立. 核电厂智能诊断方法研究的进展[J]. 原子能科学技术, 2008,42(B09):92-99. ZHOU Gang, YANG Li. Advance in study of intelligent diagnostic method for nuclear power plant[J].Atomic Energy Science and Technology, 2008,42(B09):92-99. (in Chinese)
[12] 陈志辉, 夏虹, 刘邈. 核电系统故障诊断专家系统研究[J]. 核动力工程, 2006,26(5):523-527. CHEN Zhihui, XIA Hong, LIU Miao. Study of expert system of fault diagnosis for nuclear power plant[J].Nuclear Power Engineering, 2006,26(5):523-527. (in Chinese)
[1] 赵泽恒, 赵劲松. 基于破坏性实验和自动编码器的风机皮带剩余寿命预测[J]. 清华大学学报(自然科学版), 2022, 62(9): 1458-1466.
[2] 宋佳, 石若凌, 郭小红, 刘杨. 基于核极限学习机的飞行器故障诊断方法[J]. 清华大学学报(自然科学版), 2020, 60(10): 795-803.
[3] 董春玲, 赵越, 张勤. 动态故障诊断中的立体因果建模与不确定性推理方法[J]. 清华大学学报(自然科学版), 2018, 58(7): 614-622.
[4] 吐松江·卡日, 高文胜, 张紫薇, 莫文雄, 王红斌, 崔屹平. 基于支持向量机和遗传算法的变压器故障诊断[J]. 清华大学学报(自然科学版), 2018, 58(7): 623-629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn