Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 65 Issue (5): 538-543    DOI: 10.16511/j.cnki.qhdxxb.2016.25.013
  工程物理 本期目录 | 过刊浏览 | 高级检索 |
高校师生群体间人员接触网络研究
马勋, 申世飞, 倪顺江, 雍诺
清华大学 工程物理系, 公共安全研究院, 北京 100084
Student-teacher networks in university research institutes
MA Xun, SHEN Shifei, NI Shunjiang, YONG Nuo
Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(1781 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了研究高校师生群体之间的接触特性, 该文通过视频监控的手段收集了相关接触数据, 构建了该高校某研究所师生群体间的人员接触网络, 并分析了该网络的度分布、聚类系数、层次性及社团结构等特性。统计结果显示, 该研究所人员接触网络所表现出的特征兼有ER(Erdos-Renyi) 随机网络和WS(Watts-Strogatz) 小世界网络的部分特征, 同时又呈现出丰富的层次结构和模块化特性, 这些特征使得该网络明显区别于现有的ER随机网络和WS小世界网络。师生关系对于该人员接触网络的拓扑结构影响明显。该研究成果可为构建一般工作场所的人群接触网络模型提供实证研究基础, 对研究工作场所中传染病、信息等的传播动力学模型具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马勋
申世飞
倪顺江
雍诺
关键词 人员接触网络度分布群组结构    
Abstract:Student-teacher relationships in a university were analyzed using contact data from surveillance videos to calculate distributions, clustering coefficients, k-cores and community structures. The results show that the contact networks have some characteristics of ER random networks and WS small world networks, but with many more k-cores and communities. The relationships between the teachers and students play an important role in the network structure. The results provide empirical data for building contact network models in workplaces and for the study of information and epidemic spreading in workplaces.
Key wordscontact networks    degree distribution    group structures
收稿日期: 2015-12-27      出版日期: 2016-05-19
ZTFLH:  X959  
通讯作者: 倪顺江, 讲师, E-mail: sjni@tsinghua.edu.cn     E-mail: sjni@tsinghua.edu.cn
引用本文:   
马勋, 申世飞, 倪顺江, 雍诺. 高校师生群体间人员接触网络研究[J]. 清华大学学报(自然科学版), 2016, 65(5): 538-543.
MA Xun, SHEN Shifei, NI Shunjiang, YONG Nuo. Student-teacher networks in university research institutes. Journal of Tsinghua University(Science and Technology), 2016, 65(5): 538-543.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.25.013  或          http://jst.tsinghuajournals.com/CN/Y2016/V65/I5/538
  图1 研究所布局平面图
  图2 研究所人员接触网络拓扑结构示意
  图3 三种网络度分布对比
  图4 ER 随机网络拓扑结构示意
  图5 WS小世界网络拓扑结构示意
  表1 三种网络群组特性统计
  图6 人员接触网络的kG核分解示意
[1] Erd s P, Rényi A. On the evolution of random graphs[J].Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 38(1):17-61.
[2] Barabâsi A L, Jeong H, Néda Z, et al. Evolution of the social network of scientific collaborations[J].Physica A Statistical Mechanics & Its Applications, 1977, 6(2):66-70.
[3] Newman M E. The structure of scientific collaboration networks[J].Working Papers, 2000,98(2):404-409.
[4] Fass C, Ginelli M, Turtle B. Six Degree of Kevin Bacon[M]. New York:Plume Books, 1996.
[5] Achacoso T B, Yamamoto W S. AY's Neuroanatomy of C. Elegans for Computation[M]. Boca Raton, Florida:CRC Press, 1991.
[6] Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks[J]. Nature, 2000,407(6804):651-654
[7] Barabási A L, Albert R, Jeong H. Scale-free characteristic of random networks:The topology of the world-wide web[J].Physica A Statistical Mechanics & Its Applications, 2000,281(s1-4):9-77.
[8] Watts D J, Strogatz S H. Collective dynamics of "small-world" networks[J].Nature, 1998,393(6684):440-442.
[9] Guare J. Six Degrees of Separation:A Play[M]. New York, USA:Vintage, 1990.
[10] Barabasi A L, Albert R. Emergence of scaling in random networks[J].Science, 1999,286(5439):509-512.
[11] Seidman S B. Network structure and minimum degree[J].Social Networks,1983,5(3):269-287.
[12] Newman M E J. Modularity and community structure in networks[C]//2006 APS March Meeting. Baltimore, USA:American Physical Society, 2006:8577-8582.
[13] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J].Physical Review Letters, 2000,86(14):3200-3203.
[14] Claudio C, Romualdo P S. Thresholds for epidemic spreading in networks[J].Physical Review Letters,2010,105(21):3305-3305.
[15] Granovetter M S. The strength of weak ties[J].Social Science Electronic Publishing, 1973,13(2):1360-1380.
[16] Watts D J, Bak P. Small worlds:The dynamics of networks between order and randomness[J]. Sigmod Record, 1999, 31(2):74-75.
[17] Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks[J].Nature, 2000,406(6754):378-382.
[18] Hueta-Quintanilla R. Modelong social network topologies in elementary schools[J].Plos One, 2013, 8(2):e55371.
[19] Stehlé J, Voirin N, Barrat A, et al. High-resolution measurements of face-to-face contact patterns in a primary school[J]. Plos One, 2011, 6(8):23176-231789.
[20] Bollobás B, Riordan O M. Mathematical Results on Scale-free Random Graphs[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2003:1-37.
[21] Mahadevan P, Krioukov D, Fomenkov M, et al. Lessons from three views of the internet topology[J].Bone & Joint Journal,2013,95-B(11):1450-1452.
[22] Bae J, Kim S. Identifying and ranking influential spreaders in complex networks by neighborhood coreness[J]. Physica A Statistical Mechanics and Its Applications,2014,395(C):549-559.
[23] Adiga A, Vullikanti A K S. How Robust is the Core of a Network?[M]. Berlin Heidelberg:Springer, 2013:541-556.
[1] 卓子寒, 王婕, 翟伟明, 王亨, 唐劲天. 热籽介导磁感应热疗稳态温度场仿真[J]. 清华大学学报(自然科学版), 2014, 54(5): 638-642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn