Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (12): 1320-1326    DOI: 10.16511/j.cnki.qhdxxb.2016.25.019
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
快速城镇化背景下的驾驶风格多样性分析
奇格奇, 吴建平, 杜怡曼, 贾宇涵
清华大学 土木工程系, 北京 100084
Driving styles during rapid urbanization
QI Geqi, WU Jianping, DU Yiman, JIA Yuhan
Department of Civil Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1614 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 快速城镇化造成的交通拥堵、交通安全、交通环境等问题日益突出,从交通参与者个体的特性出发,分析驾驶风格多样性,从而建立“以人为本”的智能交通系统,是充分开发利用现有道路交通资源的有效途径。然而,驾驶风格难以检测和量化,这导致个体特征与系统性的计算难以进一步融合。该文通过实验车采集了16位驾驶员在实际道路上的驾驶行为数据,利用主题模型挖掘驾驶行为中的隐含主题,将数据结构由“驾驶风格-驾驶行为数据”转化为“驾驶风格-驾驶状态-驾驶行为数据”结构,发现了驾驶风格结构化信息,能够为建立更为有效的智能交通系统提供科学依据与理论支持。通过分析相关性,证实了模型重构数据与原数据有较好的一致性,验证了模型进行驾驶风格多样性分析的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
奇格奇
吴建平
杜怡曼
贾宇涵
关键词 城镇化驾驶风格主题模型智能交通驾驶行为    
Abstract:Traffic congestion, traffic safety, and traffic related environmental problems caused by rapid urbanization have become increasingly important with "human-centered" intelligent transportation systems (ITS) needed that are based on individual driving characteristics. Thus, common driving styles were analyzed to more effectively utilize the existing road transport resources. However, driving styles are difficult to identify and quantify, which leads to difficulties modelling the individual driving characteristics. In this paper, the driving characteristics of 16 drivers on actual roads were analyzed using a topical model. The hidden driving characteristics were extracted and used to convert the data from "driving style-driving behaviour data" into "driving style-driving state-driving behaviour data". The discovered driving style structural information provides theoretical support for more efficient intelligent transportation systems. The reconstructed model data is shown to correlate well with the original data which verifies the model for analyzing driving style diversity.
Key wordsurbanization    driving style    topic model    intelligent transportation systems    driving behaviour
收稿日期: 2015-12-02      出版日期: 2016-12-15
ZTFLH:  TP399  
  U471.3  
通讯作者: 吴建平,教授,E-mail:jianpingwu@tsinghua.edu.cn     E-mail: jianpingwu@tsinghua.edu.cn
引用本文:   
奇格奇, 吴建平, 杜怡曼, 贾宇涵. 快速城镇化背景下的驾驶风格多样性分析[J]. 清华大学学报(自然科学版), 2016, 56(12): 1320-1326.
QI Geqi, WU Jianping, DU Yiman, JIA Yuhan. Driving styles during rapid urbanization. Journal of Tsinghua University(Science and Technology), 2016, 56(12): 1320-1326.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.25.019  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I12/1320
  图1 城镇化率与城市道路建设发展趋势
  图2 私人机动车保有量与人均城市道路面积趋势
  图3 实验车数据采集
  图4 LDA模型的图模型形式
  图5 LDA模型驾驶风格分布训练结果
  图6 LDA模型各类驾驶状态分布训练结果
  图7 LDA模型重构数据与原数据的相关系数
[1] Wang J, Zhang L, Zhang D, et al. An adaptive longitudinal driving assistance system based on driver characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1):1-12.
[2] Marsden G, Mcdonald M, Brackstone M. Towards an understanding of adaptive cruise control[J]. Transportation Research Part C-Emerging Technologies, 2001, 9(1):33-51.
[3] 郭敏, 杜怡曼, 吴建平. 微观交通仿真基础理论及应用案例[M]. 北京:人民交通出版社, 2007.GUO Min, DU Yiman, WU Jianping. The Basic Theory of Microscopic Traffic Simulation and Its Applications[M]. Beijing:China Communications Press, 2007. (in Chinese)
[4] Jarasuniene A. Research into intelligent transport systems (ITS) technologies and efficiency[J]. Transport, 2007, 22(2):61-67.
[5] 杨超, 奚宽武. 城镇化与交通协调发展的国际经验与启示[J]. 交通世界(运输·车辆), 2014(8):36-42.YANG Chao, XI Kuanwu. International experience and implications of urbanization and coordinated development of transportation[J]. Transpoworld (Transport·Vehicle), 2014(8):36-42. (in Chinese)
[6] Piao J N, Mcdonald M. Low speed car following behaviour from floating vehicle data[C]//Proceedings of the IEEE IV 2003:Intelligent Vehicles Symposiums. Columbus, USA:IEEE, 2003:462-467.
[7] Reed M P, Green P A. Comparison of driving performance on-road and in a low-cost simulator using a concurrent telephone dialling task[J]. Ergonomics, 1999, 42(8):1015-1037.
[8] Hoogendoorn S P, Van Zuylen H J, Schreuder M, et al. Microscopic traffic data collection by remote sensing[J]. Journal of the Transportation Research Board, 2003, 1855(1):121-128.
[9] Brackstone M, Mcdonald M. An instrumented vehicle for microscopic monitoring of driver behaviour[C]//Proceedings of the IEEE-IEE Vehicle Navigation and Informations Systems Conference. Ottawa, Canada:IEEE, 1993:401-404.
[10] Mcdonald M, Brackstone M A. The role of the instrumented vehicle in the collection of data on driver behaviour[C]//IEE Colloquium on Monitoring of Driver and Vehicle Performance. London, UK:IET, 1997:1-7.
[11] Zelong L, Maozhen L, Yang L, et al. Performance evaluation of latent Dirichlet allocation in text mining[C]//Proceedings of the 8th International Conference on Fuzzy Systems and Knowledge Discovery. Shanghai, China:IEEE, 2011:2695-2698.
[12] 李庆丰. 基于主题模型的多文档自动文摘方法研究[D]. 大连:大连海事大学, 2013.LI Qingfeng. Research on the Method of Multi-document Summarization Based on Topic Model[D]. Dalian:Dalian Maritime University, 2013. (in Chinese)
[13] 李晓旭. 基于概率主题模型的图像分类和标注的研究[D]. 北京:北京邮电大学, 2012.LI Xiaoxu. The Study of Image Classification and Annotation Based on Probabilistic Topic Model[D]. Beijing:Beijing University of Posts and Telecommunications, 2012. (in Chinese)
[14] Lienou M, Maitre H, Datcu M. Semantic annotation of satellite images using latent Dirichlet allocation[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1):28-32.
[15] Youngchul C, Junghoo C. Social-network analysis using topic models[C]//Proceedings of the 35th Annual International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR 2012). Portland, USA:ACM, 2012:565-574.
[16] 骆国靖. 基于主题模型的模块化网络和社区挖掘研究[D]. 杭州:浙江大学, 2008.LUO Guojing. The Study of Module Network and Community Mining Based on Topic Model[D]. Hangzhou:Zhejiang University, 2008. (in Chinese)
[17] Deerwester S, Dumais S T, Furnas G W, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6):391-407.
[18] Hofmann T. Probabilistic latent semantic analysis[C]//Proceedings of the Uncertainty in Artificial Intelligence. Stockholm, Sweden:Morgan Kaufmann, 1999:289-296.
[19] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(4-5):993-1022.
[20] Smith A, Roberts G O. Bayesian computation via the Gibbs sampler and related Markov-chain Monte-Carlo methods[J]. Journal of the Royal Statistical Society Series B-Methodological, 1993, 55(1):3-23.
[1] 周涂强, 刘伟, 李浩然, 许述财, 孙川. 基于不安全控制行为分析的商用车AEB决策系统优化[J]. 清华大学学报(自然科学版), 2023, 63(9): 1415-1427.
[2] 臧金蕊, 焦朋朋, 宋国华, 王天实, 王健宇. 基于机动车比功率分布的生态驾驶评价与轨迹优化[J]. 清华大学学报(自然科学版), 2023, 63(11): 1760-1769.
[3] 李瑞敏, 王长君. 智能交通管理系统发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(3): 509-515.
[4] 刘家宏, 刘创, 周晋军, 邵薇薇. 城镇化和功能疏解对北京市蒸散发的影响[J]. 清华大学学报(自然科学版), 2022, 62(12): 1964-1971.
[5] 徐啸, 王灜, 金涛, 王建民. 基于主题模型加强的医疗活动表征学习方法[J]. 清华大学学报(自然科学版), 2019, 59(3): 169-177.
[6] 郝予实, 范玉顺. 服务系统中冷启动服务协作关系挖掘与预测[J]. 清华大学学报(自然科学版), 2019, 59(11): 917-924.
[7] 陈涛, 陈智超. 基于证据推理法的城镇综合承灾能力网格化评价方法[J]. 清华大学学报(自然科学版), 2018, 58(6): 570-575.
[8] 张书玮, 冯桂璇, 樊月珍, 万爽, 罗禹贡. 基于信息交互的大规模电动汽车充电路径规划[J]. 清华大学学报(自然科学版), 2018, 58(3): 279-285.
[9] 谭金华, 石京. 浓雾下高速公路双车道间断放行措施[J]. 清华大学学报(自然科学版), 2016, 56(9): 985-990.
[10] 杨殿阁, 何长伟, 李满, 何奇洸. 基于支持向量机的汽车转向与换道行为识别[J]. 清华大学学报(自然科学版), 2015, 55(10): 1093-1097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn