Scattering component consistency based parameter for polarimetric SAR image classification
JIAO Zhihao1,2, YANG Jian1, YE Chunmao3, SONG Jianshe4
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. Information Center of Ministry of Industry and Information Technology, Beijing 100846, China;
3. Beijing Institute of Radio Measurement, Beijing 100854, China;
4. The Second Artillery Engineering University, Xi'an 710025, China
Abstract:The scattering entropy accurately describes the randomness of a scattering medium, but analyses do not use the relationships between the three eigenvectors representing the different coherent scatterings. More polarization information is extracted by a parameter describing the consistency of the scattering components to classify of polarimetric SAR images. The parameter contains information on the eigenvalue distributions and similarities between the coherent scattering components and represents the closeness of the scattering to simplex coherent scattering. The AIRSAR L-band polarimetric image of San Francisco is segmented using this parameter instead of the scattering entropy and then adjusted by a Wishart classifier. Tests demonstrate the effectiveness of this parameter to improve the classification and object details.
焦智灏, 杨健, 叶春茂, 宋建社. 基于散射成分一致性参数的极化SAR图像分类[J]. 清华大学学报(自然科学版), 2016, 56(8): 908-912.
JIAO Zhihao, YANG Jian, YE Chunmao, SONG Jianshe. Scattering component consistency based parameter for polarimetric SAR image classification. Journal of Tsinghua University(Science and Technology), 2016, 56(8): 908-912.
[1] Cloude S R.An entropy based classification scheme for polarimetric SAR[C]//Proceedings of the IGARSS'95.Florence,Italy:IEEE Press,1995:2000-2002.
[2] Cloude S R,Pottier E.A review of target decomposition theorems in radar polarimetry[J].IEEE Trans on Geosci and Remote Sensing,1996,34(2):498-518.
[3] Cloude S R,Pottier E.An entropy based classification scheme for land applications of polarimetric SAR[J].IEEE Trans on Geosci and Remote Sensing,1997,35(1):68-78.
[4] Lee J S,Grunes M R,Ainsworth T L,et al.Unsupervised classification using polarimetric decomposition and complex Wishart classifier[J].IEEE Trans on Geosci and Remote Sensing,1999,35(3):2249-2258.
[5] Ferro-Famil L,Pottier E,Lee J S.Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier[J].IEEE Trans on Geosci and Remote Sensing,2001,39(11):2332-2342.
[6] Park S E,Moon W M.Unsupervised classification of scattering mechanisms in polarimetric SAR data using fuzzy logic in entropy and alpha plane[J].IEEE Trans on Geosci and Remote Sensing,2007,45(8):2652-2664.
[7] YANG Jian,PENG Yingning,LIN Shiming.Similarity between two scattering matrices[J].Electronics Letters,2001,37(3):193-194.
[8] YIN Junjun,YANG Jian,Yamaguchi Y.A new method for polarimetric SAR image classification[C]//Proceedings of the APSAR2009.Xi'an,China:APSAR,2009:733-737.
[9] YANG Jian,DONG Guiwei,PENG Yingning,et al.Generalized polarimetric contrast enhancement[J].IEEE Geosci and Remote Sensing Letters,2004,1(3):171-174.
[10] AN Wentao,ZHANG Weijie,YANG Jian,et al.On the similarity parameter between two targets for the case of Multi-look Polarimetric SAR[J].Chinese Journal of Electronics,2009,18(3):545-550.
[11] Lee J S,Schuler D L,Ainsworth T L.Polarimetric SAR data compensation for terrain azimuth slope variation[J].IEEE Trans on Geosci and Remote Sensing,2000,38(5):2153-2163.
[12] AN Wentao,CUI Yi,YANG Jian.Three-component model-based decomposition for polarimetric SAR data[J].IEEE Trans on Geosci and Remote Sensing,2010,48(6):2732-2739.
[13] AN Wentao,CUI Yi,YANG Jian,et al.Fast Alternatives to H/α for Polarimetric SAR[J].IEEE Geosci and Remote Sensing Letters,2010,7(2):343-347.