Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (12): 1312-1319    DOI: 10.16511/j.cnki.qhdxxb.2016.25.042
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
高填方地基强夯处理的颗粒流模拟及其横观各向同性性质
周梦佳, 宋二祥
清华大学 土木工程系, 北京 100084
Particle flow simulations of the compaction of filling materials in highly filled foundation with analyses of the transverse isotropy
ZHOU Mengjia, SONG Erxiang
Department of Civil Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1599 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 山区机场高填方地基一般采用强夯施工填筑而成,其填料通常为土石混合料。其中碎石料往往由爆破开采得到,其形状不规则,而土料的加入使其密实特性与纯碎石料又有所不同。针对高填方地基的上述特点,该文对长条形碎石颗粒采用颗粒流软件PFC3D进行土石混合料地基的强夯模拟。为研究颗粒形状和细粒含量对强夯效果的影响,同时建立了椭球形颗粒模型和球形颗粒模型作为对比模型。首先研究了强夯冲击荷载作用下的重锤响应及地基内部动应力的分布和变化规律,并给出了强夯过程中的夯沉量和孔隙比的变化,采用孔隙比变化量表征强夯效果。其次对强夯前后地基土取样进行不同大主应力方向的三轴剪切实验模拟,对比强夯前后土体性质,并统计了三维组构参数来研究强夯后土体的横观各向同性性质。结果表明:长条形颗粒的土石混合料强夯密实效果最显著;长条形碎石地基经强夯后呈现明显的横观各向同性性质,竖直方向较水平方向模量及峰值强度明显要大,而采用球形颗粒时土体保持各向同性。该文可对进一步研究强夯下高填方填料的横观各向同性本构模型提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周梦佳
宋二祥
关键词 山区高填方强夯PFC3D横观各向同性细观组构    
Abstract:Compaction is widely used in the construction of highly filled foundations with the filling material composed of a mixture of broken rock and soil. The rockfill usually comes from explosion and, thus, has irregular shapes. In addition, with the soil, the response of the broken rock-soil mixture during compaction differs from that of pure rockfill. This study simulates the compaction of highly filled foundations filled with broken rock-soil mixtures using the particle flow software PFC3D with the particles assumed to be elongated. Two other with pure rockfill with and without elongated rockfill particles were used to investigate the influence of particle shape and fine soil grains. The tamper response and the dynamic stress distribution in the soil were carefully studied and verified by field tests. The void ratio and the settling ratio predictions by the three models and the void ratio reduction are used to evaluate the models. Then, samples taken from foundations and triaxial tests are simulated with different orientation angles of the major principal stress to compare the soil properties before and after compaction. Finally, a static model is used to analyze the three-dimensional mesoscopic fabric to study the transverse isotropy of the soils after compaction. The results indicate that the broken rock-soil mixture with elongated rockfill particles is the best among the three models and that the soil behavior with elongated rockfill particles is cross-anisotropic after compaction with a larger modulus and higher peak strength in the vertical direction than in the horizontal direction. The soil simulations with spherical particles show that soil remains isotropic after compaction.
Key wordshigh filled foundation    dynamic compaction    PFC3D    transverse isotropy    mesoscopic fabric
收稿日期: 2016-03-25      出版日期: 2016-12-15
ZTFLH:  TU398.9  
  TU317.1  
通讯作者: 宋二祥,教授,E-mail:songex@tsinghua.edu.cn     E-mail: songex@tsinghua.edu.cn
引用本文:   
周梦佳, 宋二祥. 高填方地基强夯处理的颗粒流模拟及其横观各向同性性质[J]. 清华大学学报(自然科学版), 2016, 56(12): 1312-1319.
ZHOU Mengjia, SONG Erxiang. Particle flow simulations of the compaction of filling materials in highly filled foundation with analyses of the transverse isotropy. Journal of Tsinghua University(Science and Technology), 2016, 56(12): 1312-1319.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.25.042  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I12/1312
  图1 滞回阻尼接触模型(法向)
  图2 本文模型
  图3 重锤位移时程
  图4 夯点下不同深度处动应力时程曲线
  图5 夯点下不同位置处动应力峰值
  图6 夯击效果分析
  图7 主应力差—轴向应变曲线
  图8 平均配位数随夯击次数变化
  图9 颗粒细观组构分析
[1] 黄磊. 山区高填方地基强夯试验及加筋土挡墙工作性能研究[D]. 杭州:浙江大学, 2013.HUANG Lei. Study on Dynamic Compaction Test of High Filled Foundation in Mountain Areas and Performance of Reinforced Retaining Wall[D]. Hangzhou:Zhejiang University, 2013. (in Chinese)
[2] 蔡袁强, 陈超, 徐长节. 强夯加固回填土地基的三维数值模拟[J]. 岩土力学, 2007, 28(6):1108-1112.CAI Yuanqiang, CHEN Chao, XU Changjie. Three-dimensional numerical simulation of dynamic compaction of backfilled soil[J]. Rock and Soil Mechanics, 2007, 28(6):1108-1112. (in Chinese)
[3] 何兆益, 周虎鑫, 张弛. 山区机场高填方土石混填强夯参数的现场试验研究[J]. 公路交通科技, 2002, 19(4):30-32.HE Zhaoyi, ZHOU Huxin, ZHANG Chi. Soil stone filling high embankment impact compaction parameter field test study for mountain area airport[J]. Journal of Highway and Transportation Research and Development, 2002, 19(4):30-32.(in Chinese)
[4] 何长明, 邹金锋, 李亮. 强夯动应力的量测及现场试验研究[J]. 岩土工程学报, 2007, 29(4):628-632. HE Changming, ZOU Jinfeng, LI Liang. Field tests on measurement of dynamic stress of dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4):628-632. (in Chinese)
[5] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65.
[6] 贾敏才, 王磊, 周健. 干砂强夯动力特性的细观颗粒流分析[J]. 岩土力学, 2009, 30(4):871-878.JIA Mincai, WANG Lei, ZHOU Jian. Mesomechanical analysis of characteristics of dry sands in response to dynamic compaction with PFC<sup>2D</sup>[J]. Rock and Soil Mechanics, 2009, 30(4):871-878. (in Chinese)
[7] 蒋鹏, 李荣强, 孔德坊. 离散元法用于块石土强夯过程模拟[J]. 岩土力学, 1999, 20(3):29-34.JIANG Peng, LI Rongqiang, KONG Defang. Computer simulation of the dynamic compacting process on granular soil by DEM[J]. Rock and Soil Mechanics, 1999, 20(3):29-34. (in Chinese)
[8] Ma Z Y, Dang F N, Liao H J. Numerical study of the dynamic compaction of gravel soil ground using the discrete element method[J]. Granular Matter, 2014, 16(6):881-889.
[9] Deluzarche R, Cambou B. Discrete numerical modelling of rockfill dams[J]. Int J Numer Anal Meth Geomech, 2006, 30(11):1075-1096.
[10] Alaei E, Mahboubi A. A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon[J]. Granular Matter, 2012, 14(6):707-717.
[11] Lin X, Ng T T. A three-dimensional discrete element model using arrays of ellipsoids[J]. Geotechnique, 1997, 47(2):319-329.
[12] 王磊. 干砂强夯动力颗粒定向细观颗粒流分析[J]. 中外建筑, 2010(9):142-146.WANG Lei. Mesomechanical analysis of particle arrangement of dry sands in response to dynamic compaction with PFC<sup>2D</sup>[J]. Chinese and Overseas Architecture, 2010(9):142-146.(in Chinese)
[13] 于艺林. 考虑应力主轴旋转的各向异性砂土本构规律与数学模型[D]. 北京:清华大学, 2010.YU Yilin. Research on Constitutive Law and Mathematical Model of Anisotropic Sands under Rotation of Principal Stress Axes[D]. Beijing:Tsinghua University, 2010. (in Chinese)
[14] 史旦达, 周健, 刘文白, 等. 砂土单调剪切特性的非圆颗粒模拟[J]. 岩土工程学报, 2008, 30(9):1361-1366.SHI Danda, ZHOU Jian, LIU Wenbai, et al. Numerical simulation for behaviors of sand with non-circular particles under monotonic shear loading[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9):1361-1366. (in Chinese).
[15] Oda M K. Initial fabrics and their relations to mechanical properties of granular materials[J]. Soils and Foundations, 1972, 12(1):17-36.
[16] Oda M K. Microscopic deformation mechanism of granular materials[J]. Soils and Foundations, 1974, 14(4):25-38.
[17] Rothenburg L, Bathurst R J. Analytical study of induced anisotropy in idealized granular materials[J]. Geotechnique, 1989, 39(4):601-614.
[18] 刘洋, 吴顺川, 周健. 单调荷载下砂土变形过程数值模拟及细观机制研究[J]. 岩土力学, 2008, 29(12):3199-3205.LIU Yang, WU Shunchuan, ZHOU Jian. Numerical simulation of sand deformation under monotonic loading and mesomechanical analysis[J]. Rock and Soil Mechanics, 2008, 29(12):3199-3205. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn