Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (11): 1154-1160    DOI: 10.16511/j.cnki.qhdxxb.2016.26.004
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
基于GSOM模型的音位范畴习得建模
曹梦雪1, 李爱军2, 方强2
1. 北京师范大学 文学院, 北京 100875;
2. 中国社会科学院 语言研究所, 北京 100732
GSOM-based modeling study of phoneme acquisition
CAO Mengxue1, LI Aijun2, FANG Qiang2
1. School of Chinese Language and Literature, Beijing Normal University, Beijing 100875, China;
2. Institute of Linguistics, Chinese Academy of Social Sciences, Beijing 100732, China
全文: PDF(1673 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了探究神经网络模型在儿童语言习得模拟研究中的应用,该文在可扩展的自组织网络模型(growing self-organizing map,GSOM)算法的基础上,模拟了婴幼儿习得标准德语部分元音和辅音音位范畴的过程。该研究将优化的网络扩展策略和“循环性强化和复习训练”学习算法与传统的GSOM算法进行了结合。模拟结果显示:“循环性强化和复习训练”算法可以有效地提高模型网络的学习质量;模型算法可以较好地习得元音音位和辅音发音方式的范畴,并构建相应的知识网络。建模研究的结果表明:在习得语言的过程中,通过对语音声学信息的加工,婴幼儿有能力习得元音音位和辅音发音方式的范畴,并构建元音音位在声学空间内的分布关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹梦雪
李爱军
方强
关键词 神经计算模型可扩展的自组织网络儿童语言习得范畴化学习    
Abstract:Neural network models of child language acquisition are used to simulate children's phoneme acquisition for selected vowels and consonants of Standard German based on the growing self-organizing map (GSOM) modeling algorithm. An optimized growing strategy and a "cyclical reinforcing and reviewing training" procedure are integrated into the traditional GSOM algorithm.Simulations show that the "cyclical reinforcing and reviewing training" procedure significantly improves the learning quality of the network with the algorithm recognizing the vowel and manner of articulation categories to build the corresponding knowledge network. The modeling result reveals that during language acquisition, children have the ability to utilize acoustic features to acquire vowels and articulation categories, and to build acoustic space relations among different vowels.
Key wordsneuro-computational model    growing self-organizing map    child language acquisition    categorical learning
收稿日期: 2016-06-29      出版日期: 2016-11-15
ZTFLH:  TP391.9  
通讯作者: 方强,副研究员,E-mail:fangqiang@cass.org.cn     E-mail: fangqiang@cass.org.cn
引用本文:   
曹梦雪, 李爱军, 方强. 基于GSOM模型的音位范畴习得建模[J]. 清华大学学报(自然科学版), 2016, 56(11): 1154-1160.
CAO Mengxue, LI Aijun, FANG Qiang. GSOM-based modeling study of phoneme acquisition. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1154-1160.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.26.004  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I11/1154
  图1 GSOM 网络的初始结构
  图2 模型在添加新节点时的不同扩展策略
  图3 标准德语音节[lo]的声学信息表征
  图4 基于5组实验结果的均方差均值
  图5 训练结束后,知识网络中模型神经元节点对元音音位范畴的表征和聚类
  图6 训练结束后,知识网络中模型神经元节点对辅音发音方式的表征和聚类
[1] Kuhl P K. Early language acquisition:Cracking the speech code[J]. Nature Reviews Neuroscience, 2004, 5(11):831-843.
[2] Kuhl P K. Brain mechanisms in early language acquisition[J]. Neuron, 2010, 67(5):713-727.
[3] Kuhl P K. Early linguistic experience and phonetic perception:Implications for theories of developmental speech perception[J]. Journal of Phonetics, 1993, 21(1):125-139.
[4] Maye J, Werker J F, Gerken L. Infant sensitivity to distributional information can affect phonetic discrimination[J]. Cognition, 2002, 82(3):B101-B111.
[5] Kohonen T. Self-organizing Maps[M]. Berlin:Springer, 2001.
[6] Kohonen T. Essentials of the self-organizing map[J]. Neural Networks, 2013, 37:52-65.
[7] Kuhl P K. Human adults and human infants show a ‘perceptual magnet effect’ for the prototypes of speech categories, monkeys do not[J]. Perception & Psychophysics, 1991, 50(2):93-107.
[8] Kuhl P K, Williams K A, Lacerda F, et al. Linguistic experience alters phonetic perception in infants by 6 months of age[J]. Science, 1992, 255(5044):606-608.
[9] Ritter H, Kohonen T. Self-organizing semantic maps[J]. Biological Cybernetics, 1989, 61(4):241-254.
[10] Kröger B J, Birkholz P, Kannampuzha J, et al. Learning to associate speech-like sensory and motor states during babbling[C]//Proceedings of the 7th International Seminar on Speech Production, Ubatuba-SP, Brazil, 2006:67-74.
[11] Kröger B J, Kannampuzha J, Neuschaefer-Rube C. Towards a neurocomputational model of speech production and perception[J]. Speech Communication, 2009, 51(9):793-809.
[12] Gauthier B, Shi R, Xu Y. Simulating the acquisition of lexical tones from continuous dynamic input[J]. Journal of the Acoustical Society of America, 2007, 121(5):EL190-EL195.
[13] Li P, Farkas I, MacWhinney B. Early lexical development in a self-organizing neural network[J]. Neural Networks, 2004, 17(8):1345-1362.
[14] Li P, Zhao X, MacWhinney B. Dynamic self-organization and early lexical development in children[J]. Cognitive Science, 2007, 31(4):581-612.
[15] LI Ping, ZHAO Xiaowei. Self-organizing map models of language acquisition[J]. Frontiers in Psychology, 2013, 4:828.
[16] French R M. Catastrophic forgetting in connectionist networks[J]. Trends in Cognitive Science, 1999, 3(4):128-135.
[17] Alahakoon D, Halgamuge S K, Srinivasan B. Dynamic self-organizing maps with controlled growth for knowledge discovery[J]. IEEE Transactions on Neural Networks, 2000, 11(3):601-614.
[18] Matharage S, Alahakoon D. Growing self organising map based exploratory analysis of text data[J]. International Journal of Mathematical, Computational, Physical and Quantum Engineering, 2014, 8(4):69-76.
[19] CAO Mengxue, LI Aijun, FANG Qiang, et al. Growing self-organizing map approach for semantic acquisition modeling[C]//Proceedings of the 4th IEEE International Conference on Cognitive Infocommunications, Budapest, Hungary, 2013:33-38.
[20] CAO Mengxue, LI Aijun, FANG Qiang, et al. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling[J]. Frontiers in Psychology, 2014, 5:236.
[21] Kuhl P K. Human speech and birdsong:communication and the social brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(17):9645-9646.
[22] Tai W S, Hsu C C. A growing mixed self-organizing map[C]//Proceedings of the Sixth International Conference on Natural Computation (ICNC 2010), Yantai, China, 2010:986-990.
[23] Tai W S, Hsu C C. Growing self-organizing map with cross insert for mixed-type data clustering[J]. Applied Soft Computing, 2012, 12(9):2856-2866.
[24] Eckers C, Kröger B J, Wolff M. Semantic, phonetic, and phonological knowledge in a neurocomputational model of speech acquisition[C]//Studientexte zur Sprachkommunikation:Elektronische Sprachsignalverarbeitung, Dresden, Germany, 2012:244-251.
[25] Doupe A J, Kuhl P K. Birdsong and human speech:common themes and mechanisms[J]. Annual Review of Neuroscience, 1999, 22(1):567-631.
[26] Kuhl P K, Coffey-Corina S, Padden D, et al. Links between social and linguistic processing of speech in preschool children with autism:Behavioral and electrophysiological measures[J]. Developmental Science, 2005, 8(1):F1-F12.
[27] Du K L. Clustering, a neural network approach[J]. Neural Networks, 2010, 23(1):89-107.
[1] 李春文, 邢智鹏, 陆思聪. 面向人员定位应用的煤矿巷道网络全局化建模[J]. 清华大学学报(自然科学版), 2017, 57(3): 312-317.
[2] 彭功状, 毛华超, 张和明. 基于组件的多分辨率动态结构建模与仿真[J]. 清华大学学报(自然科学版), 2016, 56(9): 974-979,984.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn