Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (11): 1242-1248    DOI: 10.16511/j.cnki.qhdxxb.2016.26.019
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
魏建国1, 韩江2, 侯庆志2, 王颂2, 党建武2,3
1. 天津大学 软件学院, 天津 300350, 中国;
2. 天津大学 计算机科学与技术学院, 天津 300350, 中国;
3. 北陆先端科学技术大学院大学 信息科学学院, 石川923-1292, 日本
SPH simulations of aeroacoustic problems in vocal tracts
WEI Jianguo1, HAN Jiang2, HOU Qingzhi2, WANG Song2, DANG Jianwu2,3
1. School of Computer Software, Tianjin University, Tianjin 300350, China;
2. School of Computer Science and Technology, Tianjin University, Tianjin 300350, China;
3. School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
全文: PDF(1455 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在人体发音过程仿真中,考虑声道边界的动态变化以及气流的流动,可以更加准确、真实地模拟声波在声道中的传播。在处理带有移动边界的气动声学问题时,相比传统声道声学研究中广泛应用的网格方法,无网格方法可以避免网格重构、网格畸变等。基于Euler体系下的气动声学波动方程,推导了Lagrange体系下声波传播的控制方程,并建立了无网格光滑粒子动力学(smoothed particle hydrodynamics,SPH)方法的数值离散格式。通过对比静止流体中声传播问题的SPH解和时域有限差分(finite difference time domain,FDTD)解,验证了SPH方法在声学计算中的准确性和可靠性。对于一维和二维流动流体中的声传播问题,通过与基于Doppler效应的理论解对比,阐明了利用SPH方法求解复杂气动声学问题的可行性。
E-mail Alert
关键词 气动声学声道无网格光滑粒子动力学Lagrange方法    
Abstract:Simulation of human sound wave propagation need to take into account the moving boundaries and fluid flow within the vocal tract for accurate realistic models. Traditional mesh-based methods that are widely used to study human sound production have many problems due to mesh reconstruction and distortion, so they are not as effective as meshless methods. The aeroacoustic wave equations in the Eulerian framework are transformed to the governing equations for wave propagation in the Lagrangian form and discretized using the smoothed particle hydrodynamics (SPH) method. The accuracy and reliability of SPH for wave propagation in a static media are shown by comparisons with finite difference time domain (FDTD) results. This method is validated against the Doppler effect based theoretical solutions for one-and two-dimensional aeroacoustics to verify the ability of SPH to solve complex aeroacoustic problems.
Key wordsaeroacoustics    vocal tract    meshless    smoothed particle hydrodynamics    Lagrangian method
收稿日期: 2016-06-24      出版日期: 2016-11-26
ZTFLH:  TP391  
通讯作者: 侯庆志,讲师,     E-mail:
魏建国, 韩江, 侯庆志, 王颂, 党建武. 声道中气动声学问题的光滑粒子动力学模拟[J]. 清华大学学报(自然科学版), 2016, 56(11): 1242-1248.
WEI Jianguo, HAN Jiang, HOU Qingzhi, WANG Song, DANG Jianwu. SPH simulations of aeroacoustic problems in vocal tracts. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1242-1248.
链接本文:  或
  图1 一维静止介质中250μs时的波形
  图2 一维静止介质中500μs时的波形
  图3 一维流动介质中250μs时的波形
  图4 一维流动介质中500 μs时的波形
  图5 二维静止介质中200μs时的波形
  图6 二维静止介质中400 μs时的波形
  图7 二维流动介质中200 μs时的波形
  图8 二维流动介质中400 μs时的波形
[1] Stevens K N. Acoustic Phonetics[M]. Cambridge:The MIT Press, 2000.
[2] CHEN Xi, DANG Jianwu, YAN Han, et al. A neural understanding of speech motor learning[C]//Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA 2013). Kaohsiung, Taiwan, China:IEEE Press, 2013:321-325.
[3] Lighthill M J. On sound generated aerodynamically:II. Turbulence as a source of sound[J]. Proc R Soc Lond A, 1954, 222:1-32.
[4] Tam C K W. Computational aeroacoustics:Issues and methods[J]. AIAA J, 1995, 33(10):1788-1796.
[5] Tam C K W, Webb J C. Dispersion-relation-preserving finite difference scheme for computational acoustics[J]. J Comput Phys, 1993, 107(2):262-281.
[6] Lele S K. Compact finite difference scheme with spectral-like resolution[J]. J Comput Phys, 1992, 103(1):16-42.
[7] Kim J W, Lee D J. Optimized compact finite difference schemes with maximum resolution[J]. AIAA J, 1996, 34(5):887-893.
[8] Zhong X L. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition[J]. J Comput Phys, 1998, 144(2):662-709.
[9] Zhuang M, Chen R F. Optimized upwind dispersion relation preserving finite difference scheme for computational aeroacoustics[J]. AIAA J, 1998, 36(11):2146-2148.
[10] Gaitonde D, Shang J S. Optimized compact difference based finite-volume schemes for linear wave phenomena[J]. J Comput Phys, 1997, 138(2):617-643.
[11] Lee C, Seo Y. A new compact spectral scheme for turbulence simulation[J]. J Comput Phys, 2002, 183(2):438-469.
[12] Hu F Q, Hussaini M Y, Manthey J L. Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics[J]. J Comput Phys, 1996, 124(1):177-191.
[13] Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II:general framework[J]. Math Comput, 1989, 52:411-435.
[14] Liu G R, Liu M B. Smoothed Particle Hydrodynamics Methed:A Meshfree Pariticle Method[M]. Singapore:World Scientific Press, 2003.
[15] 张德良. 计算流体力学教程[M]. 北京:高等教育出版社, 2010. ZHANG Deliang. A Course in Computational Fluid Dynamics[M]. Beijing:Higher Education Press, 2010. (in Chinese)
[16] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. Astron J, 1977, 8(12):1013-1024.
[17] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics:Theory and applications to non-spherical stars[J]. MNRAS, 1977, 18:375-389.
[18] Monaghan J J. Smoothed particle hydrodynamics and its diverse applications[J]. Ann Rev Fluid Mech, 2012, 44(44):323-346.
[19] Lastiwka M, Basa M, Quinlan N J. Permeable and non-reflecting boundary conditions in SPH[J]. Int J Numer Methods Fluids, 2009, 61:709-724.
[20] HOU Qingzhi, Kruisbrink A C H, Pearce F, et al. Smoothed particle hydrodynamics simulations of flow separation at bends[J]. Comput Fluids, 2014, 90(4):138-146.
[21] Sullivan D M. Electromagnetic Simulation Using the FDTD Method[M]. New York:John Wiley & Sons, 2013.
[1] 曹洪林, 孔江平. 成年人声道参数与身高的相关性[J]. 清华大学学报(自然科学版), 2016, 56(11): 1184-1189,1195.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持