Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (1): 7-11    DOI: 10.16511/j.cnki.qhdxxb.2017.21.002
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
用于高频地波雷达阵列天线的孤立大目标分层校准算法
徐朝晖1, 吴建平1, 冯正和2
1. 清华大学 计算机科学与技术系, 北京 100084;
2. 清华大学 电子工程系, 北京 100084
Hierarchical calibration algorithm using isolated large targets on an HFGW radar antenna array
XU Zhaohui1, WU Jianping1, FENG Zhenghe2
1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1038 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 高频地波雷达接收阵列不可避免地存在幅度和相位误差,这时天线方向图会产生歧变并使杂波对消算法失效。校准方法有采用辅助信源、建立阵列模型进行参数估计、利用噪声或杂波做为校准源等,缺点分别为成本高、实时性差、不能校准相位误差。针对以上问题,该文提出了孤立大目标分层校准算法。首先将阵列分成若干子阵,然后选取在空域和Doppler域都具有唯一性的大信噪比目标作为校准源,采用改进的噪声子空间拟合法或者相差校准法对各子阵的幅相误差进行校准,最后通过对各子阵误差矢量的融合得到统一的误差矢量,从而实现整个阵列的幅相校准。校准后阵列天线的幅度误差、相位误差和波束方向图旁瓣均显著减小。理论和实践都表明,孤立大目标分层校准算法比传统算法在实时性和精度方面都得到了大幅度的提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐朝晖
吴建平
冯正和
关键词 高频地波雷达阵列天线空域滤波器幅相误差    
Abstract:High frequency ground wave(HFGW) radar antenna arrays always have amplitude-phase errors; thus, when the antenna pattern is changed, the clutter cancellation algorithm must be recalibrated. The existing calibration methods include using an auxiliary source, building an array model for parameter estimation, and using the noise or clutter as a calibration source. However, the first method is expensive, the second has poor real-time performance, and the third cannot calibrate the phase error. This paper presents a hierarchical calibration algorithm using isolated large targets. The array is divided into several subarrays with a high SNR target which is unique in the spatial and Doppler domains as the calibration source. Then, the errors in each subarray are calibrated using the improved noise subspace fitting method or the phase difference calibration method to get a uniform error vector by integrated each subarray error vector to calibrate the entire array's amplitude and phase errors. The calibration significantly reduces the amplitude error, phase error and the sidelobe of the antenna pattern. Both theoretical results and tests show that this calibration method greatly improves the accuracy and real-time response than the traditional algorithm.
Key wordshigh frequency ground wave (HFGW) radar    array antenna    spatial filter    amplitude-phase error
收稿日期: 2016-09-28      出版日期: 2017-01-20
ZTFLH:  TN911.72  
通讯作者: 吴建平,教授,E-mail:jianping@cernet.edu.cn     E-mail: jianping@cernet.edu.cn
引用本文:   
徐朝晖, 吴建平, 冯正和. 用于高频地波雷达阵列天线的孤立大目标分层校准算法[J]. 清华大学学报(自然科学版), 2017, 57(1): 7-11.
XU Zhaohui, WU Jianping, FENG Zhenghe. Hierarchical calibration algorithm using isolated large targets on an HFGW radar antenna array. Journal of Tsinghua University(Science and Technology), 2017, 57(1): 7-11.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.21.002  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I1/7
  图1 阵列的分层示意图
  图2 阵列天线校准前后的幅度误差
  图3 阵列天线校准前后的相位误差
  图4 阵列误差校准前后波束方向
[1] Griffiths L. Time-domain adaptive beamforming of HF backscatter radar signals[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(5):707-720.
[2] Harry L, Van T. Optimum Array Processing[M]. Hoboken:A John Wiely & Sons Inc Publication, 2002.
[3] Friedlander B, Weiss A. Direction finding in the presence of mutual coupling[J]. IEEE Trans on AP, 1991, 39(3):273-284.
[4] See C. Method for array calibration in high resolution sensor array processing[J]. IEEE Proc Radar Sonar and Navig, 1995, 142(3):90-96.
[5] Keizer W. Fast and accurate array calibration using a synthetic array approach[J]. IEEE transactions on antennas and propagation, 2011, 59(11):4115-4122.
[6] Lier E, Zemlyansky M, Purdy D, et al. Phased array calibration and characterization based on orthogonal coding:Theory and experimental validation[J]. IEEE International Symposium on Phased Array Systems & Technology, 2010, 35(3):271-278.
[7] Solomon I, Gray D, Abramovich Y. Receiver array calibration using disparate sources[J]. IEEE Trans on AP, 2009, 47(3):496-505.
[8] LIU Hongqing, ZHAO Luming, LI Yong, et al. A sparse-based approach for DOA estimation and array calibration in uniform linear array[J], IEEE sensors journal, 2016, 16(15):6018-6027.
[9] HE Chong, LIANG Xianling, GENG Junping, Parallel calibration method for phased array with harmonic characteristic analysis[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(10):5029-5036.
[10] 吴锐, 文必洋, 钟志峰, 等. 高频地波雷达天线阵列的自校正[J]. 武汉大学学报(理学版), 2006, 52(3):371-374.WU Rui, WEN Biyang, ZHONG Zhifeng, et al. Self-correction of high frequency ground wave radar antenna array[J]. Journal of Wuhan University (science edition), 2006, 52(3):371-374. (in Chinese)
[11] Takahashi T, Nakamoto N, Ohtsuka M, et al. On-board calibration methods for mechanical distortions of satellite phased array antennas[J]. IEEE transactions on antennas and propagation, 2012, 60(3):1362-1372.
[12] Ayers A, Dorsey W, Hayer K, et al.Planar near-field measurement of digital phased arrays using near-field scan plane reconstruction[J].IEEE transaction on antennas and propagation, 2012, 60(6):2711-2718.
[13] Schmidt R. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Trans on AP, 1986, 34(3):276-280.
[14] Pascal V, Xavier M, Philippe L. Performance analysis of an improved MUSIC DOA estimator[J]. IEEE transactions on signal processing, 2015, 63(23):6407-6422.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn