Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (12): 1296-1302    DOI: 10.16511/j.cnki.qhdxxb.2017.21.028
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
终端直接通信中基于统计QoS保证的资源优化
米翔, 赵明, 许希斌, 王京
清华大学 电子工程系, 微波与数字通信技术国家重点实验室, 清华信息科学与技术国家实验室, 北京 100084
Resource optimization for D2D communications based on statistical QoS provisioning
MI Xiang, ZHAO Ming, XU Xibin, WANG Jing
Tsinghua National Laboratory for Information Science and Technology, State Key Laboratory on Microwave and Digital Communications, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1176 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 终端直通(device-to-device,D2D)通信技术已成为第五代移动通信(5G)中的关键技术。资源分配直接关系着D2D通信的质量,是D2D通信中的重要研究内容。该文研究了正交频分多址接入(orthogonal frequency division multiple access,OFDMA)蜂窝网络中的D2D通信,用统计服务质量(quality-of-service,QoS)保证来刻画用户的时延需求,在保证蜂窝用户的干扰门限要求下,以最大化统计带QoS保证的系统吞吐量为目标,提出了有效的资源分配算法。通过Lagrange方法求解原始优化问题,提出了交替式优化算法和渐进凸近似算法。仿真表明,所提方案能有效提升系统性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
米翔
赵明
许希斌
王京
关键词 无线通信终端直接通信资源分配功率控制统计服务质量保证    
Abstract:Device-to-device (D2D) communications are a key technology in fifth generation (5G) cellular networks. Resource allocation is critical to the D2D communication performance and is a key research topic. This study considers D2D communications in orthogonal frequency division multiple access (OFDMA) based cellular networks where the user delay requirements are characterized by the statistical quality-of-service (QoS) provisioning. An effective resource allocation scheme is given to maximize the QoS-guaranteed system throughput while guaranteeing the interference threshold requirements of the cellular users. The original optimization problem is solved using the Lagrange approach with algorithms based on an alternating optimization method and a successive convex approximation method. Simulations show that the resource allocation scheme significantly improves the system performance.
Key wordswireless communication    device-to-device (D2D) communications    resource allocation    power control    statistical quality-of-service (QoS) provisioning
收稿日期: 2017-01-23      出版日期: 2017-12-15
ZTFLH:  TN929.5  
通讯作者: 王京,教授,E-mail:wangj@tsinghua.edu.cn     E-mail: wangj@tsinghua.edu.cn
引用本文:   
米翔, 赵明, 许希斌, 王京. 终端直接通信中基于统计QoS保证的资源优化[J]. 清华大学学报(自然科学版), 2017, 57(12): 1296-1302.
MI Xiang, ZHAO Ming, XU Xibin, WANG Jing. Resource optimization for D2D communications based on statistical QoS provisioning. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1296-1302.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.21.028  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I12/1296
  图1 系统模型
  图2 Σi∈Dλiθ 的关系
  图3 Σi∈Dλi与I t h 的关系
[1] Boccardi F, Heath R W, Lozano A, et al. Five disruptive technology directions for 5G[J]. IEEE Communication Magazine, 2014, 52(2):74-80.
[2] Mumtaz S, Rodriguez J. Smart Device to Smart Device Communication[M]. Gewerbestrasse, Switzerland:Springer, 2014.
[3] Asadi A, WANG Qing, Mancuso V. A survey on device-to-device communication in cellular networks[J]. IEEE Communications Surveys Tutorials, 2014, 16(4):1801-1819.
[4] Tullberg H, Popovski P, Li Z, et al. The metis 5G system concept:Meeting the 5G requirements[J]. IEEE Communication Magazine, 2016, 54(12):132-139.
[5] WU Dapeng, Negi R. Effective capacity:A wireless link model for support of quality of service[J]. IEEE Transactions on Wireless Communications, 2003, 2(4):630-643.
[6] TANG Jia, ZHANG Xi. Quality-of-service driven power and rate adaptation over wireless links[J]. IEEE Transactions on Wireless Communications, 2007, 6(8):3058-3068.
[7] CHENG Wenchi, ZHANG Xi, ZHANG Hailin. Heterogeneous statistical QoS provisioning for full-duplex D2D communications over 5G wireless networks[C]//Proc IEEE Globecom. San Diego, CA, USA:IEEE Press, 2015:1-7.
[8] CHENG Wenchi, ZHANG Xi, ZHANG Hailin. Optimal power allocation with statistical QoS provisioning for D2D and cellular communications over underlaying wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(1):151-162.
[9] MI Xiang, XIAO Limin, ZHAO Ming, et al. Heterogeneous statistical QoS-driven power control for D2D communications underlaying cellular networks[C]//IEEE International Conference on Telecommunications (ICT). Thessaloniki, Greece:IEEE Press, 2016:74-78.
[10] MI Xiang, XIAO Limin, ZHAO Ming, et al. Statistical QoS-driven power control and source adaptation for D2D communications[C]//IEEE Military Communications Conference (MILCOM). Baltimore, MD, USA:IEEE Press, 2016:307-312.
[11] Mach P, Becvar Z, Vanek T. In-band device-to-device communication in OFDMA cellular networks:A survey and challenges[J]. IEEE Communications Surveys Tutorials, 2015, 17(4):1885-1922.
[12] Chang C S. Stability, queue length, and delay of deterministic and stochastic queueing networks[J]. IEEE Transactions on Automatic Control, 1994, 39(5):913-931.
[13] Hayashi S, LUO Zhiquan. Spectrum management for interference limited multiuser communication systems[J]. IEEE Transactions on Information Theory, 2009, 55(3):1153-1175.
[14] Ribeiro A, Giannakis G B. Separation principles in wireless networking[J]. IEEE Transactions on Information Theory, 2010, 56(9):4488-4505.
[15] Boyd S, Vandenberghe L. Convex Optimization[M]. Cambridge, UK:Cambridge University Press, 2004.
[16] Niesen U, Shah D, Wornell G W. Adaptive alternating minimization algorithms[J]. IEEE Transactions on Information Theory, 2009, 55(3):1423-1429.
[17] ZHANG Rui, CUI Shuguang, LIANG Yingchang. On ergodic sum capacity of fading cognitive multiple-access and broadcast channels[J]. Transactions on Information Theory, 2009, 55(11):5161-5178.
[18] Papandriopoulos J, Evans J. Scale:A low-complexity distributed protocol for spectrum balancing in multiuser DSL networks[J]. Transactions on Information Theory, 2009, 55(8):3711-3724.
[1] 马文魁, 叶萍, 曲新鹤, 杨小勇. 空间堆Brayton系统旁路阀功率快速调节特性[J]. 清华大学学报(自然科学版), 2023, 63(8): 1282-1290.
[2] 李维, 李城龙, 杨家海. As-Stream:一种针对波动数据流的算子智能并行化策略[J]. 清华大学学报(自然科学版), 2022, 62(12): 1851-1863.
[3] 段海宁, 张彧, 宋健. 高空平台与地面协同广播中的无线资源配置[J]. 清华大学学报(自然科学版), 2020, 60(4): 306-311.
[4] 王开锋, 张琦, 刘畅, 杜亚珍, 陈宁宁, 高莺. 面向软件定义的铁路无线通信网络[J]. 清华大学学报(自然科学版), 2019, 59(2): 142-147.
[5] 魏红鑫, 王燕敏, 李云洲, 周世东. 密集小区多载波系统中基于业务排队的能效优化[J]. 清华大学学报(自然科学版), 2017, 57(8): 867-871.
[6] 毕文平, 粟欣, 肖立民, 周世东. 部分全双工蜂窝网线性部署下的性能分析[J]. 清华大学学报(自然科学版), 2017, 57(11): 1190-1195.
[7] 牛勇, 冯子奇, 李勇, 金德鹏, 苏厉. 毫米波无线通信中的定时跟踪方案[J]. 清华大学学报(自然科学版), 2017, 57(1): 61-66.
[8] 栾凤宇, 张焱, 郑繁繁, 许希斌, 周世东. 基于用户位置信息的密钥生成安全性[J]. 清华大学学报(自然科学版), 2015, 55(8): 831-837.
[9] 林鹏, 晏坚, 费立刚, 寇保华, 刘华峰, 陆建华. 中继卫星系统的多星多天线动态调度方法[J]. 清华大学学报(自然科学版), 2015, 55(5): 491-496,502.
[10] 何强, 张秀军, 肖立民, 周世东. 大规模MIMO系统中多小区导频重用对上行可达速率的影响[J]. 清华大学学报(自然科学版), 2015, 55(5): 526-531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn