Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (11): 1196-1201    DOI: 10.16511/j.cnki.qhdxxb.2017.21.029
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
基于空-时近邻与似然比检验的传感器网络异常点检测
刘一民1, 文俊杰1, 王岚君2
1. 清华大学 电子工程系, 北京 100084, 中国;
2. 滑铁卢大学 大卫·切瑞顿计算机科学学院, 滑铁卢 N2L 3G1, 加拿大
Outlier detection based on spatio-temporal nearest neighbors and a likelihood ratio test for sensor networks
LIU Yimin1, WEN Junjie1, WANG Lanjun2
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, Canada
全文: PDF(1150 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对传感器网络中由于传感器故障造成的异常点检测问题,该文提出一种基于传感器与其空-时近邻点在测量数据之间的差异,采用似然比检验来判断传感器是否故障的异常点检测方法。在空间维,该方法基于最大后验概率选取待检测传感器当前时刻的空间近邻点;在时间维,该方法选取待检测传感器在之前若干个时刻的测量值作为其时间近邻点。然后根据待检传感器与其空-时近邻点测量数据之间的差异对其异常程度进行量化,并采用似然比检验判断待检测传感器是否故障。结果表明:该方法与已有的异常点检测方法相比,在相同的虚警率下取得了更高的检测率。例如在虚警率为10%时,该方法将检测率提升了10%~30%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘一民
文俊杰
王岚君
关键词 传感器网络异常点检测空-时近邻似然比检验    
Abstract:A spatio-temporal nearest neighbors and likelihood ratio test method was developed to detect outliers caused by sensor failures in sensor networks. In the space dimension, a sensor's spatially nearest neighbors were selected using a maximum posterior probability criterion while in the time dimension, the temporal nearest neighbors were previous observations from the same sensor. Each sensor's reading was evaluated based on differences between its earlier measurements and those of its neighbors with a sensor failure model and likelihood ratio test used to detect whether the sensor had failed. Tests show that this approach gives a higher detection rate for the same false alarm rate than existing outlier detection approaches. For example, for a 10% false alarm rate, the detection rate was increased by 10%-30%.
Key wordssensor network    outlier detection    spatial-temporal nearest neighbors    likelihood ratio test
收稿日期: 2017-01-18      出版日期: 2017-11-15
ZTFLH:  TN919.5  
引用本文:   
刘一民, 文俊杰, 王岚君. 基于空-时近邻与似然比检验的传感器网络异常点检测[J]. 清华大学学报(自然科学版), 2017, 57(11): 1196-1201.
LIU Yimin, WEN Junjie, WANG Lanjun. Outlier detection based on spatio-temporal nearest neighbors and a likelihood ratio test for sensor networks. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1196-1201.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.21.029  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I11/1196
  图1 传感器的空时近邻拓扑图示例
  图2 虚警率为0.1时,检测率随测量偏差分布期望的变化
  图3 本文方法的检测性能分别随参数kl的变化
  图4 合成数据集上的ROC曲线对比图
  图5 温度数据集上的ROC曲线对比图
  图6 地磁数据集上的ROC曲线对比图
  表1 本文方法在仿真实验中运行时间的统计结果
[1] 蔡劼, 顾明. 基于IEEE 802.15.4的星形拓扑传感器网络性能分析[J]. 清华大学学报(自然科学版), 2015, 55(5):565-571. CAI Jie, GU Ming. Performance analysis of star topology wireless sensor networks based on IEEE 802.15.4[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(5):565-571. (in Chinese)
[2] Liu Y, He Y, Li M, et al. Does wireless sensor network scale? A measurement study on GreenOrbs[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(10):1983-1993.
[3] Mainwaring A, Culler D, Polastre J, et al. Wireless sensor networks for habitat monitoring[C]//Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications. New York, NY, USA:ACM Press, 2002:88-97.
[4] Zhang Y, Meratnia N, Havinga P. Outlier detection techniques for wireless sensor networks:A survey[J]. IEEE Communications Surveys & Tutorials, 2010, 12(2):159-170.
[5] 蒋晓隆, 刘培, 李政. 数据协调方法在传感器故障监测中的应用[J]. 清华大学学报(自然科学版), 2014, 54(6):763-768.JIANG Xiaolong, LIU Pei, LI Zheng. Data reconciliation for sensor fault monitoring[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(6):763-768. (in Chinese)
[6] Han J, Kamber M, Pei J. Data Mining:Concepts and Techniques[M]. Burlington, VT, USA:Morgan Kaufmann Press, 2012.
[7] Knox E M, Ng R T. Algorithms for mining distance-based outliers in large datasets[C]//Proceedings of the International Conference on Very Large Data Bases. Burlington, VT, USA:Morgan Kaufmann Press, 1998:392-403.
[8] Rajasegarar S, Leckie C, Palaniswami M, et al. Distributed anomaly detection in wireless sensor networks[C]//IEEE Singapore International Conference on Communication Systems. Singapore, Singapore:IEEE Press, 2006:1-5.
[9] Bettencourt L M A, Hagberg A A, Larkey L B. Separating the wheat from the chaff:Practical anomaly detection schemes in ecological applications of distributed sensor networks[C]//International Conference on Distributed Computing in Sensor Systems. Berlin, German:Springer Press, 2007:223-239.
[10] Papadimitriou S, Kitagawa H, Gibbons P B, et al. Loci:Fast outlier detection using the local correlation integral[C]//19th International Conference on Data Engineering (ICDE). Bangalore, India:IEEE Press, 315-326.
[11] Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets[J]. ACM Sigmod Record, 2000, 29(2):427-438.
[12] Sandryhaila A, Moura J M F. Discrete signal processing on graphs:Frequency analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(12):3042-3054.
[13] Chandola V, Banerjee A, Kumar V. Anomaly detection:A survey[J]. ACM Computing Surveys, 2009, 41(3):75-79.
[14] Zhang K, Hutter M, Jin H. A new local distance-based outlier detection approach for scattered real-world data[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, German:Springer Press, 2009:813-822.
[15] Bruwer F J, Viljoen J, Swanepoel N J. Sensor Structure:World Intellectual Property Organization, WO/2008/052229. 2008-05-02.
[16] Paik B G, Cho S R, Park B J, et al. Characteristics of wireless sensor network for full-scale ship application[J]. Journal of Marine Science and Technology, 2009, 14(1):115-126.
[17] NOAA. Global summary of the day[Z/OL].[2017-01-15]. ftp://ftp.ncdc.noaa.gov/pub/data/gsod
[18] 国家地磁台网中心. 数据服务:观测数据[Z/OL].[2017-01-15]. http://oa.global183.com. Geomagnetic Network of China. Data service:Observation data[Z/OL].[2017-01-15]. http://oa.global183.com. (in Chinese)
[19] Lazarevic A, Ertöz L, Kumar V, et al. A comparative study of anomaly detection schemes in network intrusion detection[C]//Siam International Conference on Data Mining. San Francisco, CA, USA:SIAM Press, 2003:25-36.
[1] 朱斌, 王立平, 吴军, 赖寒松. 面向不完全维修数控机床的可靠性建模与评估[J]. 清华大学学报(自然科学版), 2022, 62(5): 965-970.
[2] 苘大鹏, 王臣业, 杨武, 王巍, 玄世昌, 靳小鹏. 低能耗的无线传感器网络隐私数据融合方法[J]. 清华大学学报(自然科学版), 2017, 57(2): 213-219.
[3] 付俊松, 刘云. 基于信誉系统及数据噪声点检测技术的无线传感器网络节点安全模型[J]. 清华大学学报(自然科学版), 2017, 57(1): 24-27.
[4] 周彩秋, 杨余旺, 王永建. 无线传感器网络节点行为度量方案[J]. 清华大学学报(自然科学版), 2017, 57(1): 39-43.
[5] 蔡劼, 顾明. 基于IEEE 802.15.4的星形拓扑无线传感器网络性能分析[J]. 清华大学学报(自然科学版), 2015, 55(5): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn