Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (11): 1179-1184    DOI: 10.16511/j.cnki.qhdxxb.2017.21.035
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
无动力储能式截瘫助行外骨骼弹簧刚度优化
关鑫宇, 季林红, 王人成
清华大学 机械工程系, 摩擦学国家重点实验室智能与生物机械分室, 北京 100084
Optimization of an unpowered energy-stored exoskeleton spring stiffness for spinal cord injuries
GUAN Xinyu, JI Linhong, WANG Rencheng
Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
全文: PDF(2016 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 无动力储能式截瘫助行外骨骼为不同身高、体重和损伤情况的截瘫患者提供精准化助行,储能弹簧作为外骨骼标准元件,其刚度为固定值。该文针对该外骨骼储能弹簧刚度参数选择问题,建立了截瘫患者穿戴无动力储能式截瘫助行外骨骼单侧下肢从站立中期到站立后期动力学模型,得到人体髋关节力矩与身高、体重、髋关节角度的关系,并提出以人体髋关节和弹簧力矩之和绝对值的积分为优化目标的弹簧刚度参数优化设计方法。研究发现:不同身高、体重组合情况下,外骨骼弹簧1刚度k1满足正态分布,弹簧2刚度k2不满足正态分布;k1k2的中位数3 180和1 279 N/m作为无动力储能式截瘫助行外骨骼储能弹簧刚度参数,适用于身高和体重在百分位数P1~P99间的患者。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关鑫宇
季林红
王人成
关键词 截瘫行走站立外骨骼储能    
Abstract:The unpowered energy-stored exoskeleton can provide precise walking assistance for spinal cord injury patients for a specified body height, weight and injury level. Since the energy-stored springs are standard components of the exoskeleton, their stiffness should be constant. The aim of this study is to select the optimal stiffness of the exoskeleton springs. The hip joint moment was related to the body height, body weight and hip joint angle through an inverse dynamics model for spinal cord injury patients walking in the single support phase from mid stance to terminal stance. The optimization method minimized the integral of the absolute moment generated by the hip joint and springs. The results show that the stiffness of spring 1 (k1) has a normal distribution while the stiffness of spring 2 (k2) does not. The medians of the two spring stiffnesses (the median k1=3 180 N/m and the median k2=1 279 N/m) can apply to patients whose heights and weights are in the P1-P99 ranges.
Key wordsspinal cord injury    walking    standing    exoskeleton    energy-stored
收稿日期: 2016-05-26      出版日期: 2017-11-15
ZTFLH:  R496  
通讯作者: 季林红,教授,E-mail:jilh@tsinghua.edu.cn     E-mail: jilh@tsinghua.edu.cn
引用本文:   
关鑫宇, 季林红, 王人成. 无动力储能式截瘫助行外骨骼弹簧刚度优化[J]. 清华大学学报(自然科学版), 2017, 57(11): 1179-1184.
GUAN Xinyu, JI Linhong, WANG Rencheng. Optimization of an unpowered energy-stored exoskeleton spring stiffness for spinal cord injuries. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1179-1184.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.21.035  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I11/1179
  图1 无动力储能截瘫助行外骨骼
  图2 下肢动力学模型和受力分析示意图
  图3 一个步态周期髋关节角度、足底压力 中心到脚后跟距离和地面反力竖直分力变化 (阴影部分为站立中期到站立后期)
  表1 人体模型参数[15]
  图4 无动力储能外骨骼储能元件示意图
  表2 中国成年人身高、体重参数
  图5 弹簧刚度分布
  图6 从站立中期到站立后期髋关节、 弹簧力矩和的绝对值的积分
  表3 k1、k2 相关计算结果
  图7 弹簧刚度分布直方图
[1] Kirshblum S C, Burns S P, Biering-Sorensen F, et al.International standards for neurological classification of spinal cord injury (revised 2011)[J]. The Journal of Spinal Cord Medicine, 2011, 34(6):535-546.
[2] Maimoun L, Fattal C, Micallef J, et al.Bone loss in spinal cord-injured patients:From physiopathology to therapy[J]. Spinal Cord, 2006, 44(4):203-210.
[3] Johnson W B.Walking mechanics of persons who use reciprocating gait orthoses[J]. Journal of Rehabilitation Research and Development, 2009, 46(3):435.
[4] Colombo G, Wirz M, Dietz V.Driven gait orthosis for improvement of locomotor training in paraplegic patients[J]. Spinal Cord, 2001, 39(5):252-255.
[5] Audu M L, To C S, Kobetic R, et al.Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2011, 18(6):610-618.
[6] Drake R, Vogl A W, Mitchell A W, Gray's Anatomy for Students[M]. New York:Bellevue Literary Press, 2014.
[7] Middleton J W, Sinclair P J, Smith R M, et al.Postural control during stance in paraplegia:Effects of medially linked versus unlinked knee-ankle-foot orthoses[J]. Archives of Physical Medicine & Rehabilitation, 1999, 80(12):1558-1565.
[8] Abe K.Comparison of static balance, walking velocity, and energy consumption with knee-ankle-foot orthosis, walkabout orthosis, and reciprocating gait orthosis in thoracic-level paraplegic patients[J]. Journal of Prosthetics & Orthotics, 2006, 18(18):87-91.
[9] Walsh C J, Paluska D, Pasch K, et al. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation. Orlando, FL, USA:IEEE, 2006:3485-3491.
[10] Guan X, Liu Y, Gao L, et al.Trunk muscle activity patterns of a person with spinal cord injury walking with different un-powered exoskeletons:A case study[J]. Journal of Rehabilitation Medicine, 2016, 48(4):390-396.
[11] Zajac F E, Neptune R R, Kautz S A.Biomechanics and muscle coordination of human walking:Part I:Introduction to concepts, power transfer, dynamics and simulations[J]. Gait & Posture, 2002, 16(3):215-232.
[12] Johnson W B, Fatone S, Gard S A.Walking mechanics of persons who use reciprocating gait orthoses[J]. Journal of Rehabilitation Research & Development, 2009, 46(3):435-446.
[13] Chiu M C, Wu H C, Chang L Y.Gait speed and gender effects on center of pressure progression during normal walking[J]. Gait & Posture, 2013, 37(1):43-8.
[14] Fineberg D B, Asselin P, Harel N Y, et al.Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia[J]. The Journal of Spinal Cord Medicine, 2013, 36(4):313-321.
[15] Winter D A, Biomechanics and Motor Control of Human Movement[M]. New York:John Wiley & Sons, 2009.
[16] Reynolds H M, Snow C C, Young J W.Spatial geometry of the human pelvis[J]. Spatial Geometry of the Human Pelvis, 1982.
[17] Lin K H, Lu T W, Hsu P P, et al.Postural responses during falling with rapid reach-and-grasp balance reaction in patients with motor complete paraplegia[J]. Spinal Cord, 2008, 46(3):204-209.
[1] 黎帆, 李东兴, 王殿君, 陈亚, 唐晓强. 基于欠驱动并联索机构的肩关节助力外骨骼[J]. 清华大学学报(自然科学版), 2022, 62(1): 141-148.
[2] 曹军文, 郑云, 张文强, 于波. 能源互联网推动下的氢能发展[J]. 清华大学学报(自然科学版), 2021, 61(4): 302-311.
[3] 汪伟, 杨开明, 朱煜, 钱宇阳. 基于经验模态分解法和摆动脚参数的行走速度估计[J]. 清华大学学报(自然科学版), 2021, 61(10): 1152-1158.
[4] 刘宇霖,李银波,卢仁浩,关鑫宇,季林红. 截瘫助行外骨骼髋关节离合式弹性驱动器[J]. 清华大学学报(自然科学版), 2021, 61(1): 42-49.
[5] 彭发忠, 张朋, 王立平, 邵珠峰, 杨迪, 杨快. 基于飞轮转速自适应规划的伺服线能量管理[J]. 清华大学学报(自然科学版), 2020, 60(11): 927-933.
[6] 程林, 张庆振, 蒋方华. 基于在线模型辨识的飞行器多约束复合制导技术[J]. 清华大学学报(自然科学版), 2019, 59(9): 712-719.
[7] 许宇宁, 黄京, 陈恳, 付成龙. 双足负重行走中扁担参数对腰部力矩影响的仿真研究[J]. 清华大学学报(自然科学版), 2019, 59(9): 757-764.
[8] 李银波, 汤子汉, 季林红, 蒙奎霖, 李质斌, 关鑫宇. 下肢外骨骼人机互连装置对关节内力的影响[J]. 清华大学学报(自然科学版), 2019, 59(7): 544-550.
[9] 魏鲲鹏, 戴兴建, 邵宗义. 碳纤维波纹管弯曲刚度的测量及有限元分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 587-592.
[10] 兰箭, 朴贤浚, 付成龙, 陈恳. 不同上楼速度下的垂直地面反力[J]. 清华大学学报(自然科学版), 2019, 59(6): 453-460.
[11] 马青川, 季林红, 王人成, 李伟. 用于截瘫患者康复训练的足底轮式驱动外骨骼[J]. 清华大学学报(自然科学版), 2017, 57(6): 597-603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn