Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (2): 134-140    DOI: 10.16511/j.cnki.qhdxxb.2017.22.004
  航天航空 本期目录 | 过刊浏览 | 高级检索 |
复合动作电位与迷走神经刺激个性化参数调控
袁媛1, 郝红伟1, 李路明1,2,3
1. 清华大学 航天航空学院, 北京 100084;
2. 北京脑重大疾病研究院 癫痫研究所, 北京 100093;
3. 清华-伯克利深圳学院, 深圳 518055
Compound action potential and personalized parameter regulation of vagus nerve stimulation
YUAN Yuan1, HAO Hongwei1, LI Luming1,2,3
1. School of Aerospace, Tsinghua University, Beijing 100084, China;
2. Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China;
3. Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
全文: PDF(1533 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 迷走神经刺激(VNS)广泛应用于癫痫和抑郁等多种药物难治性疾病的治疗,实现VNS个性化调控对疗法的临床推广具有重要意义。该文提出了以术中复合动作电位(CAP)为评估依据的VNS疗法个性化参数选择方法。搭建了CAP信号采集平台,开展了中华小型猪的活体实验,在恒流刺激模式下分析了电流幅度、脉宽和频率等VNS刺激参数与迷走神经CAP信号的量化关系,明确了VNS疗法临床常用刺激参数的选择依据,进而提出了个性化治疗参数的选择标准及选择范围。实验结果表明:应以CAP信号中A类纤维和B类纤维的不同响应特性为依据,开展VNS治疗癫痫和抑郁的个性化参数调控。该方法为VNS疗效的提高以及闭环VNS疗法的发展奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁媛
郝红伟
李路明
关键词 迷走神经刺激参数调控复合动作电位个性化治疗活体实验    
Abstract:Vagus nerve stimulation (VNS) is widely used to treat various refractory diseases, such as epilepsy and depression. Personalized treatment is very important in these clinical applications. The intraoperative compound action potential (CAP) response of the vagus nerve is analyzed here to evaluate the personalized parameter regulation. A CAP detection system with in vivo experiments with pigs is used to analyze the relationship between the CAP and the VNS parameters, including the current amplitude, pulse width and frequency. The results indicate the selection criteria and the ranges of the stimulation parameters for individual-based treatment. Tests demonstrate that the personalized parameters of the VNS treatment for epilepsy and depression are based on the different response characteristics of the A and B components of the CAP. These results offer a foundation for improving the therapeutic efficacy and for developing closed-loop VNS therapies.
Key wordsvagus nerve stimulation    parameter regulation    compound action potential    personalized treatment    in vivo experiment
收稿日期: 2016-04-27      出版日期: 2017-02-15
ZTFLH:  R745.1+3  
通讯作者: 郝红伟,副研究员,E-mail:haohw@tsinghua.edu.cn     E-mail: haohw@tsinghua.edu.cn
引用本文:   
袁媛, 郝红伟, 李路明. 复合动作电位与迷走神经刺激个性化参数调控[J]. 清华大学学报(自然科学版), 2017, 57(2): 134-140.
YUAN Yuan, HAO Hongwei, LI Luming. Compound action potential and personalized parameter regulation of vagus nerve stimulation. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 134-140.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.004  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I2/134
  图1 CAP采集平台
  图2 活体动物实验
  图3 迷走神经CAP信号(0.9mA,200μs,10Hz)
  图4 刺激电流幅度与CAP信号响应幅值
  图5 刺激电流脉宽与CAP信号响应幅值
  图6 刺激电流频率与CAP信号响应幅值
[1] 郭松铎, 陶月玉, 林尚楠. 心脏病学词典[M]. 北京:中国医药科技出版社, 1998.GUO Songduo, TAO Yueyu, LIN Shangnan. Cardiology Dictionary[M]. Beijing:China Medical Science Press, 1998. (in Chinese)
[2] 孟凡刚, 张建国. 迷走神经刺激与癫痫的治疗[J]. 立体定向和功能性神经外科杂志, 2009(3):188-192.MENG Fangang, ZHANG Jianguo. Vagus nerve stimulation and treatment of epilepsy[J]. Chin J Stereotact Funct Neurosurg, 2009(3):188-192. (in Chinese)
[3] Amar A P, Apuzzo M L, Liu C Y. Vagus nerve stimulation therapy after failed cranial surgery for intractable epilepsy:Results from the vagus nerve stimulation therapy patient outcome registry[J]. Neurosurgery, 2008, 62(S2):506-513.
[4] Elliott R E, Morsi A, Tanweer O, et al. Efficacy of vagus nerve stimulation over time:Review of 65 consecutive patients with treatment-resistant epilepsy treated with VNS > 10 years[J]. Epilepsy Behav, 2011, 20(3):478-483.
[5] Spanaki M V, Allen L S, Mueller W M, et al. Vagus nerve stimulation therapy:5-Year or greater outcome at a university-based epilepsy center[J]. Seizure, 2004, 13(8):587-590.
[6] Rush A J, Sackeim H A, Marangell L B, et al. Effects of 12 months of vagus nerve stimulation in treatment-resistant depression:A naturalistic study[J]. Biol Psychiat, 2005, 58(5):355-363.
[7] Conway C R, Chibnall J T, Gebara M A, et al. Association of cerebral metabolic activity changes with vagus nerve stimulation antidepressant response in treatment-resistant depression[J]. Brain Stimulation, 2013, 6(5):788-797.
[8] Bergey G K. Neurostimulation in the treatment of epilepsy[J]. Exp Neurol, 2013, 244:87-95.
[9] Heck C, Helmers S L, DeGiorgio C M. Vagus nerve stimulation therapy, epilepsy, and device parameters:Scientific basis and recommendations for use[J]. Neurology, 2002, 59(6S4):S31-S37.
[10] Mu Q, Bohning D E, Nahas Z, et al. Acute vagus nerve stimulation using different pulse widths produces varying brain effects[J]. Biol Psychiat, 2004, 55(8):816-825.
[11] Labiner D M, Ahern G L. Vagus nerve stimulation therapy in depression and epilepsy:Therapeutic parameter settings[J]. Acta Neurol Scand, 2007, 115(1):23-33.
[12] Müller H H, Kornhuber J, Maler J M, et al. The effects of stimulation parameters on clinical outcomes in patients with vagus nerve stimulation implants with major depression[J]. J ECT, 2013, 29(3):e40-e42.
[13] Aaronson S T, Carpenter L L, Conway C R, et al. Vagus nerve stimulation therapy randomized to different amounts of electrical charge for treatment-resistant depression:Acute and chronic effects[J]. Brain Stimul, 2013, 6(4):631-640.
[14] De Ferrari G M, Schwartz P J. Vagus nerve stimulation:From pre-clinical to clinical application:Challenges and future directions[J]. Heart Fail Rev, 2011, 16(2):195-203.
[15] Evans M S, Verma-Ahuja S, Naritoku D K, et al. Intraoperative human vagus nerve compound action potentials[J]. Acta Neurol Scand, 2004, 110(4):232-238.
[16] Usami K, Kawai K, Sonoo M, et al. Scalp-recorded evoked potentials as a marker for afferent nerve impulse in clinical vagus nerve stimulation[J]. Brain Stimul, 2013, 6(4):615-623.
[17] Tosato M, Yoshida K, Toft E, et al. Closed-loop control of the heart rate by electrical stimulation of the vagus nerve[J]. Med Biol Eng Comput, 2006, 44(3):161-169.
[18] Hopkins D A, Gootman P M, Gootman N, et al. Anatomy of medullary and peripheral autonomic neurons innervating the neonatal porcine heart[J]. J Autonom Nerv Sys, 1997, 64(2):74-84.
[19] Anholt T A, Ayal S, Goldberg J A. Recruitment and blocking properties of the CardioFit stimulation lead[J]. J Neural Eng, 2011, 8(3), 034004.
[20] Ordelman S C M A, Kornet L, Cornelussen R, et al. An indirect component in the evoked compound action potential of the vagal nerve[J]. J Neural Eng, 2010, 7(6), 066001.
[21] Grill W M, Norman S E, Bellamkonda R V. Implanted neural interfaces:Biochallenges and engineered solutions[J]. Annu Rev Biomed Eng, 2009, 11:1-24.
[22] Durand D. Electric Stimulation of Excitable Tissue:The Biomedical Engineering Handbook[M]. New York:CRC Press, 2000.
[23] 郝为强. 电刺激下神经纤维动作电位的仿真研究[D]. 上海:同济大学, 2003.HAO Weiqiang. Simulation Study of Action Potential of Nerve Fiber under Electrical Stimulation[D]. Shanghai:Tongji University, 2003. (in Chinese)
[24] Han J S, Chen X H, Sun S L, et al. Effect of low-and high-frequency TENS on Met-enkephalin-Arg-Phe and dynorphin A immunoreactivity in human lumbar CSF[J]. Pain, 1991, 47(3):295-298.
[25] Jia F, Guo Y, Wan S, et al. Variable frequency stimulation of subthalamic nucleus for freezing of gait in Parkinson's disease[J]. Parkinsonism Rel D, 2015, 21(12):1471-1472.
[26] Grimonprez A, Raedt R, Baeken C, et al. The antidepressant mechanism of action of vagus nerve stimulation:Evidence from preclinical studies[J]. Neurosci Biobehav Rev, 2015, 56:26-34.
[27] Lulic D, Ahmadian A, Baaj A A, et al. Vagus nerve stimulation[J]. Neurosurg Focus, 2009, 27(3), E5.
[28] Salinsky M C, Burchiel K J. Vagus nerve stimulation has no effect on awake EEG rhythms in humans[J]. Epilepsia, 1993, 34(2):299-304.
[29] Rutecki P. Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation[J]. Epilepsia, 1990, 31(S2):S1-S6.
[30] Mollet L, Grimonprez A, Raedt R, et al. Intensity-dependent modulatory effects of vagus nerve stimulation on cortical excitability[J]. Acta Neurol Scand, 2013, 128(6):391-396.
[1] 宫琴, 张硕越. 基于声卡的CAPs阈值和调谐曲线的快速方法[J]. 清华大学学报(自然科学版), 2015, 55(9): 1036-1044.
[2] 关添, 吴默村, 朱凯, 王健. 980 nm脉冲激光诱发听神经冲动[J]. 清华大学学报(自然科学版), 2015, 55(6): 700-704.
[3] 宫琴, 黎婷婷, 刘帅. 一种基于声卡的CAPs检测系统的研制[J]. 清华大学学报(自然科学版), 2014, 54(5): 678-684.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn