Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (5): 525-529    DOI: 10.16511/j.cnki.qhdxxb.2017.22.032
  工程物理 本期目录 | 过刊浏览 | 高级检索 |
介质尺寸对水中γ射线吸收剂量累积因子的影响
李华1,2, 赵原2, 刘立业2, 肖运实2, 李君利1
1. 清华大学 工程物理系, 粒子技术与辐射成像教育部重点实验室, 高能辐射成像重点学科实验室, 北京 100084;
2. 中国辐射防护研究院 保健物理所, 剂量学室, 太原 030006
Effect of medium size on the γ-ray buildup factor for energy absorption in water
LI Hua1,2, ZHAO Yuan2, LIU Liye2, XIAO Yunshi2, LI Junli1
1. Key Laboratory of High Energy Radiation Imaging Fundamental Science, Key Laboratory of Particle and Radiation Imaging ofMinistry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Radiation Dosimetry Laboratory, Department of Health Physics, China Institute for Radiation Protection, Taiyuan 030006, China
全文: PDF(1670 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目前所使用的累积因子是在无限大介质模型下计算得到的,与现实模型差异较大。为了提高累积因子在实际计算中的精度,基于Monte Carlo方法和圆柱模型对水中的γ射线吸收剂量累积因子随介质尺寸的变化进行了研究。结果显示:水中的累积因子值会随着圆柱半径的变大而先增大,后趋于稳定。其在趋于稳定值时对应的圆柱半径数值与能量和介质厚度无关,仅与点源和测量点到介质表面的距离有关。在累积因子达到稳定值之前,其大小随圆柱半径的变化较大,在一定自由程数范围内符合线性变化规律,并且随着介质厚度的增大,符合线性规律对应的自由程数范围也会增大。该研究可为使用点核积分方法进行屏蔽设计时分析计算误差提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李华
赵原
刘立业
肖运实
李君利
关键词 辐射防护累积因子介质尺寸影响因素    
Abstract:γ-Ray buildup factors calculated using an infinite medium model can differ greatly for actual finite models. The precision of the buildup factors used in the actual calculations is improved using Monte Carlo simulations to study the variation of the energy absorption buildup factors as a function of the medium size for water using a cylindrical model. The results show that as the cylinder radius increases, the buildup factors in water first increase up to a maximum. The corresponding radius values for the maximum buildup factors are not influenced by the γ-ray energy or the medium thickness, but are only related to the distance from the point source to the measured point on the medium surface. The differences between the buildup factors as the cylinder radius increases are larger than for the maximums, and the variation is linear for some mean free paths. As the medium thickness increases, the corresponding range of the mean free paths where the variation is linear also increases. This work provides a reference for analyzing calculational errors in shielding designs.
Key wordsradiation protection    buildup factor    medium size    influence factors
收稿日期: 2016-08-11      出版日期: 2017-05-15
ZTFLH:  TL72  
通讯作者: 李君利,教授,E-mail:lijunli@tsinghua.edu.cn     E-mail: lijunli@tsinghua.edu.cn
引用本文:   
李华, 赵原, 刘立业, 肖运实, 李君利. 介质尺寸对水中γ射线吸收剂量累积因子的影响[J]. 清华大学学报(自然科学版), 2017, 57(5): 525-529.
LI Hua, ZHAO Yuan, LIU Liye, XIAO Yunshi, LI Junli. Effect of medium size on the γ-ray buildup factor for energy absorption in water. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 525-529.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.032  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I5/525
  图1 介质尺寸对累积因子影响的计算模型
  图2 不同厚度下累积因子随半径R 的变化 (ds=4λ,E=0.6MeV)
  图3 不同能量下累积因子随半径R 的变化 (ds=4λ,T=1λ)
  表1 将Rw=16λ 近似为无限大所引起的偏差 (E=0.6MeV,T=1λ)
  图4 厚度为1λ 时不同ds 下累积因子随半径R 的变化
  表2 将Rw=32λ 近似为无限大所引起的偏差 (E=0.6MeV,T=1λ)
  表3 将Rw=64λ 近似为无限大所引起的偏差 (E=0.6MeV,T=1λ)
  图5 不同dm 值对累积因子的影响 (E=0.6MeV,ds=4λ,T=1λ)
  图6 累积因子随半径R 变化的拟合曲线 (E=0.6MeV,ds=4λ,T=1λ)
  图7 介质厚度为8λ 时累积因子随半径R变化的拟合曲线(E=0.6MeV,ds=4λ,T=8λ)
[1] 李星洪. 辐射防护基础[M]. 北京: 原子能出版社, 1982.LI Xinghong. Radiation Protection Foundation [M]. Beijing: Atomic Energy Press, 1982. (in Chinese)
[2] 中国科学院工程力学研究所. γ射线屏蔽参考手册[M]. 北京: 原子能出版社, 1976.Institute of Mechanics, Chinese Academy of Sciences. Gamma-Ray Shielding Reference Manual [M]. Beijing: Atomic Energy Press, 1976. (in Chinese)
[3] 刘立坡, 刘义保, 王娟. 积累因子影响因素的蒙特卡罗模拟[J]. 辐射防护, 2008, 28(2): 108-111.LIU Lipo, LIU Yibao, WANG Juan. Monte Carlo simulation of corrected value of buildup factor [J]. Radiation Protection, 2008, 28(2): 108-111. (in Chinese)
[4] 张雷, 赵兵, 王学新. 蒙特卡罗程序EGS4在γ照射量积累因子计算中的应用[J]. 辐射防护, 2011, 31(2): 88-93.ZHANG Lei, ZHAO Bing, WANG Xuexin. Application of Monte Carlo code EGS4 to calculate gamma exposure buildup factors [J]. Radiation Protection, 2011, 31(2): 88-93.(in Chinese)
[5] ANSI/ANS-6.4.3-1991. American National Standard for Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials [S]. La Grange Park, IL: American Nuclear Society, 1991.
[6] Singh V P, Badiger N M. Comprehensive study on energy absorption buildup factors and exposure buildup factors for photon energy 0.015 to 15 MeV up to 40 mfp penetration depth for gel dosimeters [J]. Radiation Physics and Chemistry, 2014, 103: 234-242.
[7] Singh V P, Badiger N M. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry [J]. Radiation Physics and Chemistry, 2014, 104: 61-67.
[8] Sharaf J M, Saleh H. Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures [J]. Radiation Physics and Chemistry, 2015, 110: 87-95.
[9] Alkhatib S F, Park C J, Jeong H Y, et al. Layer-splitting technique for testing the recursive scheme for multilayer shields gamma ray buildup factors [J]. Annals of Nuclear Energy, 2016, 88: 24-29.
[10] Briesmeister J F. MCNPTM: A General Monte Carlo N-Particle Transport Code [M]. Los Alamos, NM: Los Alamos National Laboratory, 2010.
[11] 许淑艳. 蒙特卡罗方法在实验核物理中的应用 [M]. 北京: 原子能出版社, 2006.XU Shuyan. Application of Monte Carlo Method in Nuclear Physics Experiment [M]. Beijing: Atomic Energy Press, 2006. (in Chinese)
[12] 裴鹿成, 张孝泽. 蒙特卡罗方法及其在粒子输运问题中的应用 [M]. 北京: 科学出版社, 1980.PEI Lucheng, ZHANG Xiaoze. Monte Carlo Method and Its Application in Particle Transport [M]. Beijing: Science Press, 1980. (in Chinese)
[13] Luis D. Update to ANSI/ANS-6.4.3-1991 for Low-Z and Compound Materials and Review of Particle Transport Theory [D]. Las Vegas, NV: University of Nevada-Las Vegas, 2009.
[1] 王守清, 牛耘诗, 伍迪, 褚晓凌. PPP项目控制权配置影响因素及合理配置原则[J]. 清华大学学报(自然科学版), 2019, 59(8): 663-669.
[2] 湛社霞, 匡耀求, 阮柱. 基于灰色关联度的粤港澳大湾区空气质量影响因素分析[J]. 清华大学学报(自然科学版), 2018, 58(8): 761-767.
[3] 王茵田, 文志瑛. 向下修正条款对中国可转债定价的影响[J]. 清华大学学报(自然科学版), 2018, 58(1): 108-112.
[4] 邓青, 马晔风, 刘艺, 张辉. 基于BP神经网络的微博转发量的预测[J]. 清华大学学报(自然科学版), 2015, 55(12): 1342-1347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn