Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (5): 530-536    DOI: 10.16511/j.cnki.qhdxxb.2017.22.033
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
竖直管道内强迫循环下非凝性气体对蒸汽冷凝的影响
马喜振, 贾海军, 刘洋
清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Effect of non-condensable gases on steam condensation in a vertical pipe with forced convection
MA Xizhen, JIA Haijun, LIU Yang
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1336 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 非凝性气体对蒸汽冷凝具有重要影响作用,能够大大增加蒸汽冷凝过程的传热热阻,减小传热系数。为研究非凝性气体对竖直管道内蒸汽冷凝的影响,基于Nusselt理论建立了强迫循环条件下蒸汽冷凝的传热传质类比模型。将模型的计算结果与实验数据进行了对比,结果表明:模型能够准确地预测竖直管道内蒸汽冷凝传热系数。模型中非凝性气体为空气,空气的入口质量分数对蒸汽冷凝传热系数具有较大影响。当入口空气的质量分数从8.73%到 22.45% 变化时,入口处冷凝传热系数从4.8 kW/(m2·K)到1.2 kW/(m2·K)变化,且沿着管道轴向冷凝传热系数逐渐减小。当入口温度从100 ℃到140 ℃变化时,传热系数逐渐减小。该研究表明非凝性气体的种类、质量分数和入口温度为影响蒸汽冷凝传热的重要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马喜振
贾海军
刘洋
关键词 非凝性气体冷凝传热传质强迫循环    
Abstract:Non-condensable gases have an important influence on steam condensation by increasing the thermal resistance during condensation and decreasing the heat transfer coefficient. A heat and mass analogy model based on the Nusselt's theory is developed for steam condensation in a vertical pipe with forced convection. The predicted effects of the non-condensable gases on the condensation are with agreement with experimental data. The heat transfer coefficient in the inlet varies from 4.8 kW/(m2·K) to 1.2 kW/(m2·K) for inlet air mass fractions from 8.73% to 22.45%. The heat transfer coefficient then decreases along the pipe. Increasing the inlet temperature from 100 ℃ to 140 ℃ reduces the inlet heat transfer coefficient. The research shows that the inlet temperature and the kind and the mass fraction of non-condensable gas are the important factors governing steam condensation rate.
Key wordsnon-condensable gas    condensation    heat and mass transfer    forced convection
收稿日期: 2016-08-05      出版日期: 2017-05-20
ZTFLH:  TK124  
通讯作者: 贾海军,研究员,E-mail:jiaha@tsinghua.edu.cn     E-mail: jiaha@tsinghua.edu.cn
引用本文:   
马喜振, 贾海军, 刘洋. 竖直管道内强迫循环下非凝性气体对蒸汽冷凝的影响[J]. 清华大学学报(自然科学版), 2017, 57(5): 530-536.
MA Xizhen, JIA Haijun, LIU Yang. Effect of non-condensable gases on steam condensation in a vertical pipe with forced convection. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 530-536.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.033  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I5/530
  图1 液膜冷凝模型
  表1 实验参数[11]
  图2 不同空气质量分数和入口温度下的沿管道轴向的传热系数
  图3 各个模型下的沿管道轴向的传热系数
  图4 入口温度为100℃时非凝性气体分别为空气、氦气和氩气时的冷凝传热系数
[1] Othmer D F. The condensation of steam [J]. Industrial & Engineering Chemistry, 1929, 21(6): 576-583.
[2] Al-Diwany H K, Rose J W. Free convection film condensation of steam in the presence of non-condensing gases [J]. International Journal of Heat and Mass Transfer, 1973, 16(7): 1359-1369.
[3] Rose J W. Condensation of a vapour in the presence of a non-condensing gas [J]. International Journal of Heat and Mass Transfer, 1969, 12(2): 233-237.
[4] Minkowycz W J, Sparrow E M. Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion [J]. International Journal of Heat and Mass Transfer, 1966, 9(10): 1125-1144.
[5] Huhtiniemi I K, Corradini M L. Condensation in the presence of noncondensable gases [J]. Nuclear Engineering and Design, 1993, 141(3): 429-446.
[6] Oh S, Revankar S T. Experimental and theoretical investigation of film condensation with noncondensable gas [J]. International Journal of Heat and Mass Transfer, 2006, 49(15): 2523-2534.
[7] Dehbi A A. The Effects of Noncondensable Gases on Steam Condensation under Turbulent Natural Convection Conditions [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1991.
[8] Lee K Y, Kim M H. Effect of an interfacial shear stress on steam condensation in the presence of a noncondensable gas in a vertical tube [J]. International Journal of Heat and Mass Transfer, 2008, 51(21): 5333-5343.
[9] Maheshwari N K, Saha D, Sinha R K. Investigation on condensation in presence of a noncondensable gas for a wide range of Reynolds number [J]. Nuclear Engineering and Design, 2004, 227(2): 219-238.
[10] MacAdams W H. Heat Transmission [M]. New York: McGraw-Hill, 1954.
[11] Siddique M. The Effects of Noncondensable Gases on Steam Condensation under Forced Convection Conditions [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1992.
[12] Bird R B. Transport phenomena [J]. Applied Mechanics Reviews, 2002, 55(1): R1-R4.
[13] Nithianandan C K, Morgan C D, Shah N H, et al. RELAP5/MOD2 model for surface condensation in the presence of noncondensable gases [C]//Proc 8th Int Heat Transfer Conf. Washington DC, USA: Hemisphere Publishing, 1986, 4: 1627-1633.
[14] Kays W M, Moffat R J. The Behavior of Transpired Turbulent Boundary Layers [R]. NASA STI/Recon Technical Report N, 1975, 75, 32383.
[15] Uchida H, Oyama A, Togo Y. Evaluation of Post-Incident Cooling Systems of Light Water Power Reactors: No.A/CONF.28/P/436 [R]. Tokyo: Tokyo University, 1964.
[16] Akaki H, Kataoka Y, Murase M. Measurement of condensation heat transfer coefficient inside a vertical tube in the presence of noncondensable gas [J]. Journal of Nuclear Science and Technology, 1995, 32(6): 517-526.
[1] 江锋, 庄子威, 张振中, 尉继英. 用于HEPA滤料效率检测的蒸发冷凝技术[J]. 清华大学学报(自然科学版), 2014, 54(5): 629-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn