Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (8): 785-791    DOI: 10.16511/j.cnki.qhdxxb.2017.22.038
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
箱型钢结构环缝焊接的机器人运动学分析与轨迹规划
朱志明, 郭吉昌, 马国锐, 刘博
清华大学 机械工程系, 先进成形制造教育部重点实验室, 北京 100084
Kinematics analysis and trajectory planning for a welding robot for girth welding of box-type steel structures
ZHU Zhiming, GUO Jichang, MA Guorui, LIU Bo
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1812 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对箱型钢结构施工安装现场的环缝焊接问题,设计了一种直-弧组合轨道式焊接机器人系统。对该系统进行了基于标准D-H模型和Craig修正模型的运动学对比分析,总结了各模型的运动学建模和求解过程的区别及适用性。针对箱型钢结构环缝焊接的焊枪运动轨迹规划,提出综合轨迹规划法(CTPM)。该方法使机器人以最少的自由度在箱型钢结构环缝焊接时实现焊枪任意空间位姿调整功能,使得针对箱型钢结构直角焊接的轨迹规划更加简便高效。计算和仿真结果表明:所设计的机器人系统能够满足箱型钢结构环缝焊接的功能要求,综合轨迹规划法能够实现在箱型钢结构环缝焊接时对焊枪空间位姿的有效调整。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱志明
郭吉昌
马国锐
刘博
关键词 焊接机器人箱型钢结构D-H模型运动学分析焊接轨迹规划    
Abstract:A straight-arc combined orbital welding robot system was designed for girth welding of box-type steel structures at construction sites. The kinematics analyses used the standard D-H model and the Craig modified D-H model for this welding robot with evluations based on the modeling accuracy and solution process for the welding torch trajectory planning for girth welding of box-type steel structures. The trajectory planning method could adjust for arbitrary spatial position and posture relative to the welding torch with the minimum degrees of freedom. The planning mehtod gave an efficient trajectory for right-angle welding of the box-type steel structure. Simulations show that the welding robot system can provide the girth welding of box-type steel structures and can ajust to various spatial positions and postures.
Key wordswelding robot    box-type steel structure    D-H model    kinematics analysis    welding trajectory planning
收稿日期: 2017-01-11      出版日期: 2017-08-15
ZTFLH:  TP242.3  
引用本文:   
朱志明, 郭吉昌, 马国锐, 刘博. 箱型钢结构环缝焊接的机器人运动学分析与轨迹规划[J]. 清华大学学报(自然科学版), 2017, 57(8): 785-791.
ZHU Zhiming, GUO Jichang, MA Guorui, LIU Bo. Kinematics analysis and trajectory planning for a welding robot for girth welding of box-type steel structures. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 785-791.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.038  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I8/785
  图1 箱型钢结构焊接机器人系统模型
  表1 机器人各关节参数及运动范围
  图2 箱型钢结构及轨道系统平面示意图
  图3 直线段轨道1的标准DGH 模型坐标系
  表2 直线段1标准DGH 模型参数表
  图4 圆弧轨道段1的标准DGH 模型坐标系
  图5 圆弧轨道段1的Craig修正DGH 模型坐标系
  表3 圆弧轨道段1CraigDGH 模型参数表
  表4 箱型钢结构焊接机器人的两种运动学模型应用
  表5 箱型钢结构焊接机器人的两种运动学模型对比分析
  图6 综合轨迹规划法平面示意图
  表6 典型焊枪位姿对应的机器人各关节参数表
  图7 钢结构直角拐点A 焊接过程中的机器人各关节运动曲线
[1] Sato O, Shimizu S, Nakayama S, et al. Multi-layer welding robots for structural steel frames[J]. Welding International, 1988, 2(10):917-921.
[2] Fukuhara N, Shiga A, Hashimoto J, et al. Development of a robot system for large assembly welding of steel columns[J]. Welding International, 1992, 6(10):827-830.
[3] Yoshikawa K, Tanaka K. Welding robots for steel frame structures[J]. Computer-Aided Civil and Infrastructure Engineering, 2002, 12(1):43-56.
[4] Nagata M, Baba N, Tachikawa H, et al. Steel frame welding robot systems and their application at the construction site[J]. Computer-Aided Civil and Infrastructure Engineering, 1997, 12(1):15-30.
[5] 朱志明, 倪真, 马国锐, 等. 一种箱型钢结构轨道式全位置焊接机器人:CN103286494 B[P]. 2015-05-20.ZHU Zhiming, NI Zhen, MA Guorui, et al. Rail Type All-Position Welding Robot for Box-Type Steel Structures:CN103286494 B[P]. 2015-05-20. (in Chinese)
[6] 朱志明, 马国锐, 刘晗, 等. 箱型钢结构焊接机器人系统机构设计与研究[J]. 焊接, 2014(3):2-7.ZHU Zhiming, MA Guorui, LIU Han, et al. The structure design of box-type steel structure welding robot[J]. Welding & Joining, 2014(3):2-7. (in Chinese)
[7] 朱志明, 马国锐, 郭吉昌, 等. 基于蒙特卡洛法的箱型钢结构焊接机器人工作空间分析[J]. 焊接, 2016(9):1-5.ZHU Zhiming, MA Guorui, GUO Jichang, et al. Analysis of box-type steel structure welding robot workspace based on Monte Carlo method[J]. Welding & Joining, 2016(9):1-5. (in Chinese)
[8] Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Trans of the ASME Journal of Applied Mechanics, 1955, 22:215-221.
[9] Craig J J. Introduction to robotics:Mechanics and control[J]. Automatica, 1987, 23(2):263-264.
[10] Hayati S, Mirmirani M. Improving the absolute positioning accuracy of robot manipulators[J].Journal of Robotic Systems, 1985, 2(4):397-413.
[11] Hayati S A. Robot arm geometric link parameter estimation[C]//IEEE Conference on Decision and Control. San Antonio, TX, USA, 1983:1477-1483.
[12] Veitschegger W, Wu C H. A method for calibrating and compensating robot kinematic errors[C]//IEEE International Conference on Robotics and Automation. Raleigh, NC, USA, 1987:39-44.
[13] Stone H W, Sanderson A C. Statistical performance evaluation of the S-model arm signature identification technique[C]//IEEE International Conference on Robotics and Automation. Philadelphia, PA, USA, 1988, 2:939-946.
[14] Zhuang H, Roth Z S, Hamano F. A complete and parametrically continuous kinematic model for robot manipulators[J]. IEEE Transactions on Robotics & Automation, 1992, 8(4):451-463.
[15] Niku S B. Introduction to Robotics:Analysis, Control, Applications[M]. Upper Saddle River, USA:Prentice Hall, 2001.
[16] 蔡自兴, 谢斌. 机器人学[M]. 3版. 北京:清华大学出版社, 2015. CAI Zixing, XIE Bin. Robotics[M]. 3rd ed. Beijing:Tsinghua University Press, 2015. (in Chinese)
[1] 冯消冰, 潘际銮, 高力生, 田伟, 魏然, 潘百蛙, 陈永, 陈苏云. 爬行焊接机器人在球罐自动焊接中的应用[J]. 清华大学学报(自然科学版), 2021, 61(10): 1132-1143.
[2] 郭吉昌, 朱志明, 王鑫, 马国锐. 全位置焊接机器人逆运动学数值求解及轨迹规划方法[J]. 清华大学学报(自然科学版), 2018, 58(3): 292-297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn