Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (8): 810-814    DOI: 10.16511/j.cnki.qhdxxb.2017.22.042
  精密仪器 本期目录 | 过刊浏览 | 高级检索 |
63Ni-Si辐射伏特电池镍薄膜源设计与制备
李浩, 张高飞, 尤政
清华大学 精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084
Design and fabrication of a 63Ni thin film source for a 63Ni-Si betavoltaic battery
LI Hao, ZHANG Gaofei, YOU Zheng
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
全文: PDF(2183 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在辐射伏特电池换能器件表面直接制备63Ni辐射源的方法存在加载量少、活性低、PN结性能退化等问题。该文提出一种利用氧化铟锡(ITO)薄膜作为导电层材料实现在透明封装玻璃表面电镀63Ni源的方法。根据辐射源自吸收效应理论模拟计算了63Ni-Si辐射伏特电池辐射源的最佳厚度。采用磁控溅射工艺在400 μm玻璃基底上制备了厚度为180 nm的ITO导电薄膜,利用电化学工作站,对ITO薄膜表面进行电镀镍,对镀镍之后的薄膜材料微观形貌、薄膜厚度进行表征,并对基于该辐射源制备方法的63Ni-Si辐射伏特型同位素电池电学输出性能进行理论仿真,仿真结果表明:在厚度为2 μm、活度为7.25×108 Bq、面积为36 mm2辐射源的辐照下,辐射伏特电池理论上能够输出85.4 nW输出功率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李浩
张高飞
尤政
关键词 辐射伏特电池63Ni电镀辐射源    
Abstract:Directly preparation of a 63Ni radioisotope source on the surface of a betavoltaic battery has problems such as low loadings, low activation, and functional deterioration of the PN junction. This research demonstrates the use of an indium tin oxide (ITO) membrane as a conductive layer to plate a 63Ni source on the surface of a transparent glass package. Simulations of the radiation self-absorption effect give the optimal thickness of the 63Ni-Si betavoltaic battery. Then, a 180 nm thick ITO conductive membrane is prepared on a 400 μm thick glass substrate via magnetron sputtering. 63Ni is then electroplated on the ITO membrane surface. The micro-morphology and the Ni-electroplated membrane thickness are characterized. The electrical capabilities of the 63Ni-Si betavoltaic battery fabricated based on this radiation source preparation method are then simulated. The results show that irradiation of a 2 μm thick, 7.25×108 Bq activity, 36 mm2 radiation source gives a radioisotope battery that can export 85.4 nW output power.
Key wordsbetavoltaic battery    63Ni    electroplate    radioisotope source
收稿日期: 2016-11-03      出版日期: 2017-08-15
ZTFLH:  O571.33  
通讯作者: 张高飞,副研究员,E-mail:zgf@tsinghua.edu.cn     E-mail: zgf@tsinghua.edu.cn
引用本文:   
李浩, 张高飞, 尤政. 63Ni-Si辐射伏特电池镍薄膜源设计与制备[J]. 清华大学学报(自然科学版), 2017, 57(8): 810-814.
LI Hao, ZHANG Gaofei, YOU Zheng. Design and fabrication of a 63Ni thin film source for a 63Ni-Si betavoltaic battery. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 810-814.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.042  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I8/810
  图1 辐射伏特放射性同位素电池结构示意图
  图2 表面出射功率密度与63Ni源薄膜厚度关系
  图3 本研究制备的ITO 薄膜表面形貌SEM 照片
  表1 镀镍液配方及工艺条件
  表2 镀镍厚度计算的相关参数
  图4 电镀法制备的金属镍薄膜表面形貌SEM 照片
  表3 辐射伏特电池输出性能仿真主要参数
  图5 仿真计算的辐射伏特电池的IGV 特性曲线
[1] 褚金奎, 朴相镐, 吴红超. 基于β辐射伏特效应的同位素微电池理论模型研究[J]. 核动力工程, 2006, 27(6):113-118. CHU Jinkui, PIAO Xianggao, WU Hongchao. Theoretical model study of radioisotope micro battery based on betavoltaic effect[J]. Nuclear Power Engineering, 2006, 27(6):113-118.(in Chinese)
[2] Wang G Q, Yang Y Q, Zhang H M, et al. Design and performance of energy conversion units of betavoltaic isotopic batteries[J]. Atomic Energy Science & Technology, 2010, 48(2):253-257.
[3] 罗顺忠, 王关全, 张华明. 辐射伏特效应同位素电池研究进展[J]. 同位素, 2011, 24(1):1-11.LUO Shunzhong, WANG Guanquan, ZHANG Huaming. Advance in radiation-voltaic isotope battery[J]. Isotope, 2011, 24(1):1-11.(in Chinese)
[4] Liu B, Chen K P, Kherani N P, et al. Power-scaling performance of a three-dimensional tritium betavoltaic diode[J]. Applied Physics Letters, 2009, 95(23):233112-1-233112-3.
[5] Wang G Q, Li H, Lei Y S, et al. Demonstration of <sup>147</sup>Pm-GaN betavoltaic cells[J]. Nuclear Science and Techniques, 2014, 25(2):67-70.
[6] Tang X B, Ding D, Liu Y P, et al. Optimization design and analysis of Si-<sup>63</sup>Ni betavoltaic battery[J]. Science China:Technological Sciences, 2012, 55(4):990-996.
[7] Uhm Y R, Choi B G, Kim J B, et al. Study of a betavoltaic battery using electroplated Ni-63 on nickel foil as a power source[J]. Nuclear Engineering & Technology, 2016, 48(3):773-777.
[8] Park K Y, Uhm Y R, Choi S J, et al. The effects of current density on the grain size of electroplated thick film nickel (Ni) by using Ni metal powder dissolved chloride bath[J]. Journal of the Korean Magnetics Society, 2013, 23(1):12-17.
[9] Kim J J, Uhm Y R, Son K J, et al. Fabrication of <sup>63</sup>Ni layer for betavoltaic battery[C]//2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). Rome, 2015:304-307.
[10] 韩翔, 李轶, 吴文刚, 等. 应用于MEMS的单晶硅上无电镀铜、镀镍工艺[J]. 半导体学报, 2005, 26(5):1059-1064.HAN Xiang, LI Yi, WU Wengang, et al. Electroless copper and nickel plating on single-crystal silicon for MEMS appliations[J]. Journal of Semiconductors, 2005, 26(5):1059-1064. (in Chinese)
[11] Jin J K, Uhm Y R, Choi B G, et al. Study of the electroless deposition of Ni for betavoltaic battery using PN junction without seed layer[J]. Journal of Nanomaterials, 2015, 24(21):1-5.
[12] 胡光辉, 吴辉煌, 杨防祖. 硅表面直接化学镀镍研究[J]. 科学通报, 2004, 49(17):1711-1715. HU Guanghui, WU Huihuang, YANG Fangzu. Research of direct electroless nickel plating on silicon surface[J]. Chinese Science Bulletin, 2004, 49(17):1711-1715.(in Chinese)
[13] 胡睿, 熊晓玲, 王关全, 等. 基于自组装单分子层技术的单晶硅表面化学镀镍工艺优化[C]//全国化学镀会议. 南京, 2012:32-34.HU Rui, XIONG Xiaoling, WANG Guanquan, et al. Optimization of electroless nickel plating on monocrystalline silicon surface based on self assembled monolayer technology[C]//National Electroless Plating Conference. Nanjing, 2012:32-34. (in Chinese)
[14] 张华明, 胡睿, 王关全, 等. <sup>63</sup>Ni辐射伏特同位素电池原型的研制[J]. 原子能科学技术, 2013, 47(3):490-496.ZHANG Huaming, HU Rui, WANG Guanquan, et al. Development of <sup>63</sup>Ni-voltaic nuclear micro-battery prototype[J]. Atomic Energy Science and Technology, 2013, 47(3):490-496. (in Chinese)
[15] Murashev V N, Mordkovich V N, Legotin S A, et al. Peculiarities of betavoltaic battery based on Si[J]. Journal of Nano-and Electronic Physics, 2014, 6(4):04012-1-04012-2.
[16] Bryskin B, Pustovalov A, Tsvetkov L, et al. Highly enriched nickel-63 radionuclide for β-voltaic nuclear batteries[J]. Energy Technology, 2014, 2(2):210-214.
[17] Kim T, Lee N, Jung H K, et al. Enhancement of energy performance in betavoltaic cells by optimizing self-absorption of beta particles[J]. International Journal of Energy Research, 2015, 40(4):522-528.
[18] Yakubova G N. Nuclear Batteries with Tritium and Promethium-147 Radioactive Sources[D]. Champaign, IL:University of Illinois at Urbana-Champaign, 2010.
[19] 梁时骏, 梁启民. 电镀层厚度的简便计算[J]. 电镀与精饰, 1991, 6(1):22-25.LIANG Shijun, LIANG Qimin. A simple calculation of the thickness of the plating layer[J]. Electro Plating & Finishing, 1991, 6(1):22-25.(in Chinese)
[20] Honsberg C. GaN betavoltaic energy converters[C]//Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference. Orlando, FL, 2005:102-105.
[21] Mohamadian S M, Feghhi S A H, Afarideh H. Analyze and simulation of a typical MEMS RPG using MCNP code[C]//Icone16:Proceeding of the 16th International Conference on Nuclear Engineering. Orlando, FL, 2008, 1:883-886.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn