Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (8): 832-837    DOI: 10.16511/j.cnki.qhdxxb.2017.22.046
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
叶顶间隙与轴向间隙对氦气压气机气动特性的影响
明亮1, 杨小勇1, 张佑杰1, 王捷1, 傅林2, 李珊2, 王琦2
1. 清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084;
2. 中船重工第703研究所, 哈尔滨 150078
Influence of the tip and axial clearances on the aerodynamic performance of a helium compressor
MING Liang1, YANG Xiaoyong1, ZHANG Youjie1, WANG Jie1, FU Lin2, LI Shan2, WANG Qi2
1. Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
2. No. 703 Institute of China Shipbuilding Industry Corporation, Harbin 150078, China
全文: PDF(2383 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 氦气压气机是高温气冷实验堆氦气透平发电系统的关键部件,其气动性能直接影响系统发电效率。氦气压气机径向间隙和轴向间隙对其气动性能有重要影响。该文以氦气压气机模型级为研究对象,采用试验验证过的数值计算方法,研究了叶顶间隙与轴向间隙对压气机气动性能的影响和机理。分析结果表明:减小叶顶间隙会减小泄漏流、回流、二次流,能够提高压气机的压比和效率,当间隙小于0.3 mm(叶高的2%)时尤其明显;动叶的偏离设计点的轴向移动会降低压气机的效率,可允许的轴向间隙变化范围为±1.0 mm。该研究结果揭示了叶顶间隙与轴向间隙对模型级的影响,可为氦气压气机整机气动性能的研究与优化提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
明亮
杨小勇
张佑杰
王捷
傅林
李珊
王琦
关键词 高温气冷堆氦气压气机叶顶间隙轴向间隙气动性能    
Abstract:The helium compressor is one of the key components in the high temperature gas-cooled reactor coupled with a helium turbine. The aerodynamic performance of the helium compressor significantly influences the whole system efficiency. Therefore, the effects of the tip and axial clearances on the helium compressor need to be further studied and optimized. A computational fluid dynamics model that has been verified against experimental data of the helium compressor is used to investigate the influence of the tip and axial clearances. The results show that a reduced tip clearance reduces the flow losses and increases the compression ratio and compressor efficiency, especially for clearances of less than 0.3 mm (2% of the relative blade height). A larger axial clearance lowers the compressor efficiency with an acceptable axial displacement of ±1.0 mm. The results show the influences of the tip and axial clearances on the model, and provide guidance for the design and optimization of the actual helium compressor.
Key wordshigh temperature gas-cooled reactor    helium compressor    tip clearances    axial clearances    aerodynamic performance
收稿日期: 2017-01-28      出版日期: 2017-08-15
ZTFLH:  TL334  
通讯作者: 张佑杰,教授,E-mail:zhangyj@tsinghua.edu.cn     E-mail: zhangyj@tsinghua.edu.cn
引用本文:   
明亮, 杨小勇, 张佑杰, 王捷, 傅林, 李珊, 王琦. 叶顶间隙与轴向间隙对氦气压气机气动特性的影响[J]. 清华大学学报(自然科学版), 2017, 57(8): 832-837.
MING Liang, YANG Xiaoyong, ZHANG Youjie, WANG Jie, FU Lin, LI Shan, WANG Qi. Influence of the tip and axial clearances on the aerodynamic performance of a helium compressor. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 832-837.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.046  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I8/832
  表1 氦气压气机模型级叶片基本几何参数
  表2 氦气压气机模型级的主要参数
  图1 数值计算网格示意图
  图2 不同网格数下动叶99%叶高Mach数与总压的计算结果对比
  图3 氦气压气机模型级数值计算与试验性能曲线对比
  图4 设计工况下叶顶间隙与压气机性能的关系
  图5 不同叶顶间隙对动叶吸力面流线的影响
  图6 不同叶顶间隙对动叶附近速度场的影响
  图7 叶顶间隙对动叶90%叶高处压力场的影响
  图8 移动动叶对压气机性能的影响
  图9 50%叶高处动叶位置对压力场的影响
[1] 吴宗鑫, 张作义. 世界核电发展趋势与高温气冷堆[J]. 核科学与工程, 2000, 20(3):211-219.WU Zongxin, ZHANG Zuoyi. World development of nuclear power system and high temperature gas-cooled reactor[J]. Chinese Journal of Nuclear Science and Engineering, 2000, 20(3):211-219. (in Chinese)
[2] 顾义华, 王捷. 高温气冷堆气体透平循环方式的技术评价[J]. 核动力工程, 2003, 24(2):107-111.GU Yihua, WANG Jie. Technical assessment of gas turbine cycle for high temperature gas-cooled reactor[J]. Nuclear Power Engineering, 2003, 24(2):107-111. (in Chinese)
[3] 王捷. 高温气冷堆氦气透平循环热工特性的初步研究[J]. 高技术通讯, 2002, 12(9):91-95.WANG Jie. Preliminary study on thermal features for high temperature gas-cooled reactor gas turbine cycle[J]. Chinese High Technology Letters, 2002, 12(9):91-95. (in Chinese)
[4] 张健. 氦气轴流压气机CFD模拟与气动性能分析[D]. 哈尔滨:哈尔滨工程大学, 2008.ZHANG Jian. Aerodynamic Analysis and CFD Numeration of Helium Axial Compressor[D]. Harbin:Harbin Engineering University, 2008. (in Chinese)
[5] 朱荣凯, 冀光, 邹积国, 等. 单级轴流氦气压气机空气模拟气动性能数值分析[J]. 热能动力工程, 2007, 22(6):610-614.ZHU Rongkai, JI Guang, ZOU Jiguo, et al. Numerical simulation analysis of the aerodynamic performance of a single-stage axial helium compressor with air serving as the working medium[J]. Journal of Engineering for Thermal Energy and Power, 2007, 22(6):610-614. (in Chinese)
[6] 钟胜军, 徐立民, 金洁敏, 等. 应用于氦气压气机的相似模化方法验证[J]. 热能动力工程, 2007, 22(2):129-133.ZHONG Shengjun, XU Limin, JIN Jiemin, et al. Verification of an analog modeling method for helium compressors[J]. Journal of Engineering for Thermal Energy and Power, 2007, 22(2):129-133. (in Chinese)
[7] 朱荣凯, 张健, 郑群, 等. 高温气冷堆HTGR-10能量转换单元中压气机气动性能试验研究[J]. 哈尔滨工程大学学报, 2009, 30(2):233-238.ZHU Rongkai, ZHANG Jian, ZHENG Qun, et al. Testing compressor aerodynamic performance in the power conversion unit of HTGR-10[J]. J Harbin Engineering Univ, 2009, 30(2):233-238. (in Chinese)
[8] 陈忠良, 郑群, 姜斌, 等. 高负荷氦气压气机矩形叶栅流动分离特性[J]. 哈尔滨工程大学学报, 2015, 36(3):343-347. CHEN Zhongliang, ZHENG Qun, JIANG Bin, et al. Flow separation characteristics of rectangular cascade for a highly-loaded helium compressor[J]. J Harbin Engineering Univ, 2015, 36(3):343-347. (in Chinese)
[9] 龙艳丽, 徐立民, 于景磊. 高负荷氦气压气机平面叶栅数值试验及叶型优化[J]. 热能动力工程, 2012, 27(2):246-252.LONG Yanli, XU Limin, YU Jinglei. Numerical experiment and blade profile optimization of a plane cascade in a high-load helium compressor[J]. Journal of Engineering for Thermal Energy and Power, 2012, 27(2):246-252. (in Chinese)
[10] 韩俊, 温风波, 王松涛. 氦气压气机叶型气动特性研究[J]. 科学技术与工程, 2014, 14(3):152-158.HAN Jun, WEN Fengbo, WANG Songtao. Aerodynamic performance study on the helium compressor profile[J]. Science Technology and Engineering, 2014, 14(3):152-158. (in Chinese)
[11] 孙海鸥, 叶楠, 王纪达, 等. 叶顶间隙对轴流压气机性能及流场的影响[J]. 航空发动机, 2014, 40(3):1-7.SUN Haiou, YE Nan, WANG Jida, et al. Effect of tip clearance on axial compressor performance and flow field[J]. Aeroengine, 2014, 40(3):1-7. (in Chinese)
[12] 任啟森, 杨小勇, 黄志勇, 等. 高温气冷堆氦气透平循环工质的热物性[J]. 汽轮机技术, 2006, 48(2):93-94.REN Qisen, YANG Xiaoyong, HUANG Zhiyong, et al. Thermophysical property of working fluid of high temperature gas-cooled reactor helium gas turbine cycle[J]. Turbine Technology, 2006, 48(2):93-94. (in Chinese)
[13] 《航空发动机设计手册》总编委会. 航空发动机设计手册(第8册):压气机[M].北京:航空工业出版社, 2001.Design Handbook of Aero-Engine Edit Committee. Design Handbook of Aero-Engine (8):Compressor[M]. Beijing:Aviation Industry Press, 2001. (in Chinese)
[14] 周佳惠. 高温气冷堆氦气轮机基本特性的研究[D]. 哈尔滨:哈尔滨工程大学, 2006.ZHOU Jiahui. Study on Characteristic of Helium Turbine with the High Temperature Gas-Cooled Reactor[D]. Harbin:Harbin Engineering University, 2006. (in Chinese)
[15] 曹丽华, 胡鹏飞, 李涛涛, 等. 汽轮机高压级叶顶间隙流的特性分析[J]. 中国电机工程学报, 2011, 31(23):86-93.CAO Lihua, HU Pengfei, LI Taotao, et al. Analysis on flow characteristic in blade tip clearance in high-pressure stage of steam turbine[J]. Proceedings of the CSEE, 2011, 31(23):86-93. (in Chinese)
[1] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[2] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[3] 陈璞, 童节娟, 刘涛, 张勤昭, 王宏. 高温气冷堆主氦风机预防性维修策略研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1219-1225.
[4] 曲新鹤, 胡庆祥, 倪航, 彭威, 赵钢, 王捷. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J]. 清华大学学报(自然科学版), 2023, 63(8): 1236-1245.
[5] 曹军文, 覃祥富, 胡轶坤, 张文强, 于波, 张佑杰. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
[6] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[7] 吴卓, 张文博, 王治国, 冯佳瑞, 任雅丽. 一种大型冲压式翼伞的设计与试验[J]. 清华大学学报(自然科学版), 2023, 63(3): 348-355.
[8] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[9] 史力, 赵加清, 刘兵, 李晓伟, 雒晓卫, 张征明, 张平, 孙立斌, 吴莘馨. 高温气冷堆关键材料技术发展战略[J]. 清华大学学报(自然科学版), 2021, 61(4): 270-278.
[10] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[11] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[12] 刘仁杰, 孙跃文, 刘锡明, 苗积臣, 周立业, 丛鹏. 基于螺旋CT的高温气冷堆石墨构件及碳砖缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(4): 367-376.
[13] 孙世妍, 张佑杰, 郑艳华, 夏冰. HTR-10超高温运行堆芯温度场分析[J]. 清华大学学报(自然科学版), 2021, 61(11): 1301-1307.
[14] 徐晓娜, 黄晓津. 高温气冷堆核电站计算机化规程流程的建模和验证[J]. 清华大学学报(自然科学版), 2018, 58(7): 658-663.
[15] 张竞宇, 李富, 孙玉良. 球床高温气冷堆初装堆芯的物理计算方法及验证[J]. 清华大学学报(自然科学版), 2017, 57(4): 405-409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn