Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (8): 845-850    DOI: 10.16511/j.cnki.qhdxxb.2017.22.048
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
乌东德大坝水工混凝土层间强度及层面处理改进措施
许文彬, 胡昱, 李庆斌
清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Interlayer strength of hydraulic concrete and layer surface treatment improvementin Wudongde Dam
XU Wenbin, HU Yu, LI Qingbin
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1284 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 水工混凝土在干燥多风环境下浇筑时,浇筑坯层层面将受到环境影响,层间劈拉强度也会随之减小。为了分析混凝土层间劈拉强度在环境影响下的性能变化及研究层面状态的判断方法,对不同水工混凝土材料在不同环境影响下的层间劈拉强度、下层混凝土内含水量进行了相关试验研究。研究结果表明:在干燥多风的环境影响下层间劈拉强度衰减会加剧,层间劈拉强度与下层含水量存在对应的函数关系,含水量可作为预测层间强度的指标。针对下层混凝土表面更易出现缺水等极端情况,提出了层面重塑方法,该方法可明显提高层间强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许文彬
胡昱
李庆斌
关键词 水工混凝土层间强度层面重塑含水量    
Abstract:Concrete pouring layer surfaces are seriously affected by the environment when hydraulic concrete pours in dry, windy environments which affects the interlayer strength. The effect of the concrete interlayer surface is analyzed for various environmental conditions by measuring the interlayer splitting tensile strength and the water content of the first concrete layer. The results show that the interlayer strength is reduced by the environmental conditions with the interlayer strength related to the water content in the first layer. Therefore, the water content can be used to predict interlayer strength. A layer remodeling method is proposed to improve the interlayer strength based on the extreme situation of a water shortage on concrete surface of the first layer surface.
Key wordshydraulic concrete    interlayer strength    layer remodeling    water content
收稿日期: 2017-02-28      出版日期: 2017-08-15
ZTFLH:  TV431  
通讯作者: 李庆斌,教授,E-mail:qingbinli@mail.tsinghua.edu.cn     E-mail: qingbinli@mail.tsinghua.edu.cn
引用本文:   
许文彬, 胡昱, 李庆斌. 乌东德大坝水工混凝土层间强度及层面处理改进措施[J]. 清华大学学报(自然科学版), 2017, 57(8): 845-850.
XU Wenbin, HU Yu, LI Qingbin. Interlayer strength of hydraulic concrete and layer surface treatment improvementin Wudongde Dam. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 845-850.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.048  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I8/845
  表1 一级配灰水泥混凝土配合比
  图1 常态混凝土层间劈拉强度 (水灰比0.45,温度20℃,湿度45%)
  图2 碾压混凝土层间劈拉强度 (水灰比0.45,温度20℃,湿度45%)
  图3 常态混凝土试样内总含水量变化 (水灰比0.45,温度20℃,湿度45%)
  图4 碾压混凝土试样内总含水量变化 (水灰比0.45,温度20℃,湿度45%)
  图5 混凝土层间强度与下层含水量关系
  图6 混凝土表层和内部水分系数变化对比
  图7 密封情况下层面重塑对层间劈拉强度的影响
  图8 两种层面养护方式下层面重塑对层间劈拉强度的影响 (温度20℃,湿度45%,无风)
[1] Kovler K, Roussel N. Properties of fresh and hardened concrete[J]. Cement and Concrete Research, 2011, 41(7):775-792.
[2] 王迎春. 碾压混凝土层面结合特性和质量标准研究[D]. 杭州:浙江大学, 2007.WANG Yingchun. Study on Bonding Characteristics and Quality Standard of Roller Compacted Concrete[D]. Hangzhou:Zhejiang University, 2007.(in Chinese)
[3] 林长农, 金双全, 涂传林. 龙滩有层面碾压混凝土的试验研究[J]. 水力发电学报, 2001, 74(3):117-129.LIN Changnong, JIN Shuangquan, TU Chuanlin. Experiment researches on RCC with layer surfaces for Longtan project[J]. Journal of Hydroelectric Engineering, 2001, 74(3):117-129.(in Chinese)
[4] 姜荣梅, 覃理利, 李家健. 龙滩大坝碾压混凝土层间结合质量识别标准[J]. 水力发电, 2005, 31(4):53-56.JIANG Rongmei, QIN Lili, LI Jiajian. Quality indentifying standard for RCC interlayer properties of Longtan Dam[J]. Water Power, 2005, 31(4):53-56. (in Chinese)
[5] Bettencourt Ribeiro A C, Diez-Cascon J, Gonçalves A F. Roller compacted concrete-tensile strength of horizontal joints[J]. Materials and Structures, 2001, 34(7):413-417.
[6] 陈媛, 张林, 周坤, 等. 高碾压混凝土拱坝分缝形式及破坏机理研究[J]. 水利学报, 2005, 36(5):519-524.CHEN Yuan, ZHANG Lin, ZHOU Kun, et al. Study on joint types and destructive mechanism of high RCC arch dams[J]. Journal of Hydraulic Engineering, 2005, 36(5):519-524. (in Chinese)
[7] 李鹏辉, 许维, 陈凤岐, 等. 碾压混凝土层面间隔时间宏细观试验研究[J]. 混凝土与水泥制品, 2003, 129(1):12-14.LI Penghui, XU Wei, CHEN Fengqi, et al. Study on macroscopic mesoscopic observation of the interval of roller compacted concrete[J]. China Concrete and Cement Products, 2003, 129(1):12-14. (in Chinese)
[8] 胡建平. 提高碾压混凝土坝层面粘结性能的研究[D]. 武汉:武汉大学, 2004.HU Jianping. Study on Improving Clue Capability of Roller Compacted Concrete[D]. Wuhan:Wuhan University, 2004. (in Chinese)
[9] 中华人民共和国行业标准编写组. DL/T5112-2009水工碾压混凝土施工规范[S]. 北京:中国电力出版社, 2009.The Professional Standards Compilation Group of People's Republic of China. DL/T5112-2009 Hydraulic Roller Compacted Concrete Construction Specification[S]. Beijing:China Electric Power Press, 2009.(in Chinese)
[10] De Schutter G. Applicability of degree of hydration concept and maturity method for thermo-visco-elastic behaviour of early age concrete[J]. Cement and Concrete Composites, 2004, 26(5):437-443.
[11] GUAN Junfeng, LI Qingbin, WU Zhimin, et al. Fracture parameters of site-cast dam and sieved concrete[J]. Magazine of Concrete Research, 2016, 68(1):43-54.
[12] 贾金生, 陈改新, 马锋玲, 等. 碾压混凝土坝发展水平和工程实例[M]. 北京:中国水利水电出版社, 2006.JIA Jinsheng, CHEN Gaixin, MA Fengling, et al. RCC Dam Level of Development and Project Examples[M]. Beijing:China Water Power Press, 2006. (in Chinese)
[13] ZHANG Jieying, Cusson D, Monteiro P, et al. New perspectives on maturity method and approach for high performance concrete applications[J]. Cement and Concrete Research, 2008, 38(12):1438-1446.
[1] 任明倩, 安雪晖, 谭妮, 李鹏飞. 堆石骨料对混凝土层面剪切性能影响的试验研究[J]. 清华大学学报(自然科学版), 2019, 59(12): 967-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn