Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (8): 862-866    DOI: 10.16511/j.cnki.qhdxxb.2017.22.051
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
基于用户位置变化的密钥生成速率
周世东, 杨志, 肖立民
清华大学 电子工程系, 北京 100084
Key generation rate analysis with changes in the user position
ZHOU Shidong, YANG Zhi, XIAO Limin
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1057 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在传播环境不发生改变时,唯一能带来不确定性的因素是用户位置的不断变化。该文研究了用户位置移动范围与无线密钥生成速率上界的关系。针对两种极端的静态环境场景,分析了其密钥生成速率上界。结果表明:在简单的信道环境中,信道状态分布并不是Gauss分布,此时的密钥生成速率上界仅受到用户位置改变的影响。该文分析了在简单的单反射面场景下密钥生成速率上界与信道的估计误差之间的关系。通过数值仿真得到了多散射点场景下不同信道估计误差下的密钥生成速率上界,结果表明在合法用户具有较高信噪比情况下,用户位置移动范围在1个波长左右即可获得较高的密钥生成速率上界。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周世东
杨志
肖立民
关键词 移动通信用户位置变化密钥生成速率    
Abstract:When the propagation environment does not change, the only factor that can lead to uncertainties in the key generation rate is the changing position of the user. This study analyzes the relationship between the user position variation and the wireless key generation rate with the key generation rate limit analyzed for scenarios in two static environments. The results show that in an astatic channel environment where the user positions are changing, the channel distribution is not Gaussian and the secret key generation rate is only affected by changes in the user position. The upper bound on the secret key generation rate is estimated numerically based on the channel error for the simple reflection scene. For the scattering scene, the results show that the key generation rate is high enough when the user position changes about one wavelength.
Key wordsmobile communication    user position change    key generation rate
收稿日期: 2016-11-11      出版日期: 2017-08-15
ZTFLH:  TN929.5  
引用本文:   
周世东, 杨志, 肖立民. 基于用户位置变化的密钥生成速率[J]. 清华大学学报(自然科学版), 2017, 57(8): 862-866.
ZHOU Shidong, YANG Zhi, XIAO Limin. Key generation rate analysis with changes in the user position. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 862-866.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.051  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I8/862
  图1 窃听信道系统模型
  图2 单反射面场景下通信模型
  图3 多散射点场景窃听信道模型
  图4 RU-RUinf与Bob移动范围Kcosθ 的关系
  表1 多散射点场景下主要仿真参数
  图5 RU与Bob移动范围的关系(SNRB A=26dB)
[1] Hassana A A, Starkb W E, Hersheyc J E, et al. Cryptographic key agreement for mobile radio[J]. Digital Signal Processing, 1996, 6(4):207-212.
[2] Jin R, Du X, Zeng K, et al. Delay analysis of physical-layer key generation in dynamic roadside-to-vehicle networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3):2526-2535.
[3] Jana S, Premnath S N, Clark M, et al. On the effectiveness of secret key extraction from wireless signal strength in real environments[C]//Proceedings of the 15th Annual International Conference on Mobile Computing and Networking. Beijing, 2009:321-332.
[4] Li X, Liu J, Yao Q, et al. Efficient and consistent key extraction based on received signal strength for vehicular ad hoc networks[J/OL]. IEEE Access, 2017[2016-11-08]. http://ieeexplore.ieee.org/document/7884974/. DOI:10.1109/ACCESS.2017.2685627.
[5] Wang Q, Su H, Ren K, et al. Fast and scalable secret key generation exploiting channel phase randomness in wireless networks[C]//31st IEEE International Conference on Computer Communications (INFOCOM). Shanghai, 2011:1422-1430.
[6] Zeng K, Wu D, Chan A, et al. Exploiting multiple-antenna diversity for shared secret key generation in wireless networks[C]//30th IEEE International Conference on Computer Communications (INFOCOM). San Diego, CA, 2010:1-9.
[7] He X, Dai H, Shen W, et al. Toward proper guard zones for link signature[J]. IEEE Transactions on Wireless Communications, 2016, 15(3):2104-2117.
[8] Marino F, Paolini E, Chiani M. Secret key extraction from a UWB channel:Analysis in a real environment[C]//2014 IEEE International Conference on Ultra-Wideband (ICUWB). Paris, 2014:80-85.
[9] Tunaru I, Denis B, Perrier R, et al. Cooperative group key generation using IR-UWB multipath channels[C]//2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB). Montreal, 2015:1-5.
[10] Wallace J. Secure physical layer key generation schemes:Performance and information theoretic limits[C]//IEEE International Conference on Communications. Dresden, 2009:1-5.
[11] 栾凤宇, 张焱, 郑繁繁, 等. 基于用户位置信息的密钥生成安全性[J]. 清华大学学报(自然科学版), 2015, 55(8):831-837.LUAN Fengyu, ZHANG Yan, ZHENG Fanfan, et al. Security of a position-based secret key generation method[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(8):831-837. (in Chinese)
[12] Gungor O, Chen F, Koksal C E. Secret key generation via localization and mobility[J]. IEEE Transactions on Vehicular Technology, 2014, 64(6):2214-2230.
[13] Maurer U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3):733-742.
[1] 李涛, 栾凤宇, 周世东. 基于宽带信道状态信息的密钥生成策略[J]. 清华大学学报(自然科学版), 2017, 57(10): 1009-1013.
[2] 王璟, 王燕敏, 冯伟, 肖立民, 周世东. 多小区分布式天线系统高能效协同传输方案[J]. 清华大学学报(自然科学版), 2017, 57(1): 67-71.
[3] 赵俊韬, 冯伟, 赵明, 王京. 频谱共享系统中基于大尺度信道状态信息的资源优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 692-695.
[4] 王璟, 王燕敏, 冯伟, 肖立民, 周世东. 分布式天线系统中基于大尺度信道信息的功耗优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 696-699,706.
[5] 栾凤宇, 张焱, 郑繁繁, 许希斌, 周世东. 基于用户位置信息的密钥生成安全性[J]. 清华大学学报(自然科学版), 2015, 55(8): 831-837.
[6] 李涛, 张焱, 许希斌, 周世东. 移动通信系统平均物理层安全容量[J]. 清华大学学报(自然科学版), 2015, 55(11): 1241-1245,1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn