Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (8): 867-871    DOI: 10.16511/j.cnki.qhdxxb.2017.22.052
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
密集小区多载波系统中基于业务排队的能效优化
魏红鑫1, 王燕敏2, 李云洲1, 周世东1
1. 清华大学 电子工程系, 北京 100084;
2. 中国电子科技集团公司 电子科学研究院, 北京 100041
Queue-aware energy savings in multi-carrier small-cell networks
WEI Hongxin1, WANG Yanmin2, LI Yunzhou1, ZHOU Shidong1
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. Academy of Electronics and Information Technology, China Electronics Technology Group Corporation, Beijing 100041, China
全文: PDF(1174 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 密集小区技术是满足未来高容量、高能效蜂窝通信的关键技术之一。在密集小区场景下,虽然单个基站的能耗降低了,但是由于基站总数大幅度增多,蜂窝网络的总能耗还是会随业务的增多而提高。基于用户业务排队的用户分配、频谱分配和功率分配可以有效地提升系统性能。该文研究在多载波正交信道下,基于用户业务排队进行用户调度、载波分配、功率分配来降低系统长时间的总能耗,同时保证用户业务传输的需求。通过利用Lyapunov优化理论,把问题转化成一个混合整数规划问题,并给出了多载波正交信道下的用户调度、载波分配、功率分配的算法。仿真结果验证了该算法能够降低系统能耗,同时与以优化系统和速率为目标的算法具有一致的系统和速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏红鑫
王燕敏
李云洲
周世东
关键词 小蜂窝节能多载波队列状态信息资源分配    
Abstract:The small-cell technology is one of the key technologies in cellular communications that should provide high system capacity and high energy efficiency. Although the energy consumption of one single base station diminishes in small cell networks (SCNs), the total energy consumption still increases along with the growth in traffic, as the number of base stations increases quickly. Queue state information (QSI) could be utilized for user scheduling, carrier allocation, and power allocation to enhance system performance. In this study, QSI is used to minimize the time average of the total power expenditure in multi-carrier SCNs, where no inter-cell interference exists, while satisfying the traffic demand. The problem is formulated according to Lyapunov optimization theory into a mixed integer programming problem. An optimal algorithm is given for user scheduling, carrier allocation, and power allocation in each slot. Simulations verify that the algorithm reduces the energy consumption with a similar sum rate as the algorithm aiming to maximize the system sum rate.
Key wordssmall-cell    energy saving    multi-carrier    queue state information    resource allocation
收稿日期: 2017-04-14      出版日期: 2017-08-15
ZTFLH:  TN929.5  
通讯作者: 周世东,教授,E-mail:zhousd@tsinghua.edu.cn     E-mail: zhousd@tsinghua.edu.cn
引用本文:   
魏红鑫, 王燕敏, 李云洲, 周世东. 密集小区多载波系统中基于业务排队的能效优化[J]. 清华大学学报(自然科学版), 2017, 57(8): 867-871.
WEI Hongxin, WANG Yanmin, LI Yunzhou, ZHOU Shidong. Queue-aware energy savings in multi-carrier small-cell networks. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 867-871.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.052  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I8/867
  图1 多小区多用户系统模型
  图2 多载波正交信道高能效调度算法 (MCGEEMWA)流程
  图3 仿真环境基站和用户的分布
  表1 仿真参数
  图4 系统和速率与平均业务到达速率的关系
  图5 基站总能耗与平均业务到达速率的关系
  图6 基站总能耗随基站最大发射功率的变化
[1] Cisco Systems Inc. Cisco Visual Networking Index:Global Mobile Data Traffic Forecast Update, 2015-2020 White Paper[R]. San Jose, CA, USA:Cisco Systems Inc, 2016.
[2] Andrae A S G, Edler T. On global electricity usage of communication technology:Trends to 2030[J]. Challenges, 2015, 6(1):117-157.
[3] Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks:A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3):1-40.
[4] Auer G, Blume O, Giannini V, et al. Energy Efficiency Analysis of the Reference Systems, Areas of Improvements and Target Breakdown, D2.3[R/OL]. (2010-12-31)[2016-12-15]. https://bscw.ict-earth.eu/pub/bscw.cgi/d71252/EARTH_WP2_D2.3_v2.pdf.
[5] Neely M J. Energy optimal control for time-varying wireless networks[J]. IEEE Transactions on Information Theory, 2006, 52(7):2915-2934.
[6] Andrews M, Kumaran K, Ramanan K, et al. Scheduling in a queuing system with asynchronously varying service rates[J]. Probability in the Engineering & Informational Sciences, 2004, 18(2):191-217.
[7] Shakkottai S, Stolyar A L. Scheduling for multiple flows sharing a time-varying channel:The exponential rule[J]. Translations of the American Mathematical Society Series 2, 2000, 207(2002):185-202.
[8] Sadiq B, Baek S J, De Veciana G. Delay-optimal opportunistic scheduling and approximations:The log rule[J]. IEEE/ACM Transactions on Networking, 2011, 19(2):405-418.
[9] Sharma M, LIN Xiaojun. OFDM downlink scheduling for delay-optimality:Many-channel many-source asymptotics with general arrival processes[C]//Information Theory and Applications Workshop. San Diego, CA, USA, 2011:1-10.
[10] ZHANG Honghai, Venturino L, Prasad N, et al. Weighted sum-rate maximization in multi-cell networks via coordinated scheduling and discrete power control[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(6):1214-1224.
[11] FENG Wei, CHEN Yunfei, GE Ning, et al. Optimal energy-efficient power allocation for distributed antenna systems with imperfect CSI[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9):7759-7763.
[12] ZHANG Shan, ZHANG Ning, ZHOU Sheng, et al. Energy-aware traffic offloading for green heterogeneous networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5):1116-1129.
[13] Samarakoon S, Bennis M, Saad W, et al. Ultra dense small cell networks:Turning density into energy efficiency[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5):1267-1280.
[14] LI Jian, WU Jingxian, PENG Mugen, et al. Queue-aware energy-efficient joint remote radio head activation and beamforming in cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(6):3880-3894.
[15] WEI Hongxin, YAN Yang, XIAO Limin, et al. Queue-aware energy-efficient scheduling in small-cell networks[C]//2014 IEEE International Conference on Communication Workshop. Sydney, Australia, 2014:854-859.
[16] Boyd S, Vandenberghe L. Convex Optimization[M]. Cambridge, UK:Cambridge University Press, 2004.
[17] LEI Zhuyu, Rose C. Probability criterion based location tracking approach for mobility management of personal communications systems[C]//1997 IEEE Global Telecommunications Conference. Phoenix, AZ, USA, 1997:977-981.
[18] CUI Ying, HUANG Qingqing, Lau V K N. Queue-aware dynamic clustering and power allocation for network MIMO systems via distributed stochastic learning[J]. IEEE Transactions on Signal Processing, 2010, 59(3):1229-1238.
[1] 段海宁, 张彧, 宋健. 高空平台与地面协同广播中的无线资源配置[J]. 清华大学学报(自然科学版), 2020, 60(4): 306-311.
[2] 解来卿, 张东好, 罗禹贡, 陈锐, 李克强. 雷达共用型智能混合动力汽车节能控制策略[J]. 清华大学学报(自然科学版), 2018, 58(3): 286-291,297.
[3] 蔺萌, 李云洲, 许希斌, 王京. 基于干扰消除的BICM-FBMC-ID接收机设计[J]. 清华大学学报(自然科学版), 2017, 57(8): 872-877,883.
[4] 米翔, 赵明, 许希斌, 王京. 终端直接通信中基于统计QoS保证的资源优化[J]. 清华大学学报(自然科学版), 2017, 57(12): 1296-1302.
[5] 毕文平, 粟欣, 肖立民, 周世东. 部分全双工蜂窝网线性部署下的性能分析[J]. 清华大学学报(自然科学版), 2017, 57(11): 1190-1195.
[6] 田文洪, 李国忠, 陈瑜, 黄超杰, 杨吴同. 一种兼顾负载均衡的Hadoop集群动态节能方法[J]. 清华大学学报(自然科学版), 2016, 56(11): 1226-1231.
[7] 蔡世杰, 肖立民, 王京, 周世东. 以节能为目标的小基站周期性开启研究[J]. 清华大学学报(自然科学版), 2016, 56(1): 111-116.
[8] 林鹏, 晏坚, 费立刚, 寇保华, 刘华峰, 陆建华. 中继卫星系统的多星多天线动态调度方法[J]. 清华大学学报(自然科学版), 2015, 55(5): 491-496,502.
[9] 杨倩鹏, 陈晓东, 田磊, 史琳. 微生物污垢的生长模型与受力分析[J]. 清华大学学报(自然科学版), 2014, 54(2): 247-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn