Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (4): 345-350    DOI: 10.16511/j.cnki.qhdxxb.2017.25.002
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
基于扩展有限元的重力坝尺寸效应
石杰, 李庆斌
清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Size effects of concrete gravity dams based on XFEM analyses
SHI Jie, LI Qingbin
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1233 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 准脆性材料的结构破坏试验会引起尺寸效应现象,相似模型的结果不能简单地由相似关系换算至原型。该文利用扩展有限元方法,研究了预制缝重力坝的破坏过程和极限承载力。同时,为揭示结构承载力的尺寸效应,建立了一系列几何相似的离心模型和重力加速度模型(不考虑自重相似),并进行了超载破坏评价。结果表明:随着结构尺寸的增加,离心模型的极限承载力大致呈指数衰减趋势下降,并逐渐趋于稳定值;重力加速度模型的极限承载力首先呈指数衰减趋势下降,当超过一定尺寸范围后,又大致呈线性增长;断裂过程区相对长度和自重应力效应分别是结构强度尺寸效应的内在因素和外部荷载因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石杰
李庆斌
关键词 水工结构重力坝尺寸效应离心模型重力加速度模型    
Abstract:Similarity model test results cannot be simply converted to the prototype without consideration of the size effect. The extended finite element method (XFEM) was used to analyze the failure mechanism and overall structure strength of a type of prenotched gravity dam. The size effect was investigated by analyzing the nominal strength of geometrically similar prenotched gravity dams with various sizes. The nominal strength and failure mechanism were analyzed for two sets of models with an extra centrifugal force and a self-weight force. The results show that the structural strength in the centrifugal models decreases exponentially and tends to be stable for larger sizes, while in gravitational models the strength decreases exponentially up to a critical height and then increases gradually due the self-weight contribution. The relative length of the fracture process zone is an intrinsic factor while the self-weight stress is an external loading factor for the effect of size on the structural strength.
Key wordshydraulic structures    gravity dam    size effect    centrifugal model    gravitational model
收稿日期: 2015-12-12      出版日期: 2017-04-19
ZTFLH:  TV313  
通讯作者: 李庆斌,教授,E-mail:qingbinli@tsinghua.edu.cn     E-mail: qingbinli@tsinghua.edu.cn
引用本文:   
石杰, 李庆斌. 基于扩展有限元的重力坝尺寸效应[J]. 清华大学学报(自然科学版), 2017, 57(4): 345-350.
SHI Jie, LI Qingbin. Size effects of concrete gravity dams based on XFEM analyses. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 345-350.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.002  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I4/345
  图1 大坝模型几何尺寸图(单位:mm)
  表1 数值计算的外荷载分布
  表2 数值计算的材料参数
  图2 荷载-裂纹口张开位移曲线
  图3 裂纹扩展路径的对比结果
  表3 离心模型的极限承载强度
  表4 重力加速度模型的极限承载强度
  图4 结构模型的尺寸效应曲线
  图5 1:100结构模型破坏模式
[1] 周维垣, 杨若琼, 刘耀儒, 等. 高拱坝整体稳定地质力学模型试验研究[J]. 水力发电学报, 2005, 24(1): 53-58.ZHOU Weiyuan, YANG Ruoqiong, LIU Yaoru, et al. Research on geomechanical model of rupture tests of arch dams for their stability[J]. Shuili Fadian Xuebao, 2005, 24(1): 53-58.(in Chinese)
[2] Renzi R, Ferrara G, Mazza G. Cracking in a concrete gravity dam: A centrifugal investigation[C]//Dam Fracture and Damage. Rotterdam, Netherlands: A.A. Balkema, 1994: 103-109.
[3] REN Qingwen, JIANG Yazhou. Ultimate bearing capacity of concrete dam involved in geometric and material nonlinearity[J]. Science China Technological Sciences, 2011, 54(3): 509-515.
[4] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
[5] Oliveira S, Faria R. Numerical simulation of collapse scenarios in reduced scale tests of arch dams[J]. Engineering Structures, 2006, 28(10): 1430-1439.
[6] 魏博文, 乐豪峰, 胡凯, 等. 基于内时损伤的混凝土拱坝结构分析方法研究[J]. 水电能源科学, 2012, 30(3): 77-80.WEI Bowen, LE Haofeng, HU Kai, et al. Structure analysis method of concrete arch dam based on endochronic damage[J]. Water Resources and Power, 2012, 30(3): 77-80.(in Chinese)
[7] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781.
[8] Ba?ant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Materials and Structures, 1983, 16(3): 155-177.
[9] Ba?ant Z P. Size effect on structural strength: A review[J]. Archive of Applied Mechanics, 1999, 69(9): 703-725.
[10] Ba?ant Z P. Scaling laws in mechanics of failure[J]. Journal of Engineering Mechanics, 1993, 119(9): 1828-1844.
[11] Weibull W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18(3): 293-297.
[12] Le J L, Ba?ant Z P. Scaling of static fracture of quasi-brittle structures: Strength, lifetime, and fracture Kinetics[J]. Journal of Applied Mechanics, 2012, 79(3): 1-10.
[13] Ba?ant Z P. Size effect in blunt fracture: Concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4): 518-535.
[14] Ba?ant Z P, Vor?echovský M, Novák D. Asymptotic prediction of energetic-statistical size effect from deterministic finite-element solutions[J]. Journal of Engineering Mechanics, 2007, 133(2): 153-162.
[15] Duan K, Hu X, Wittmann F. Boundary effect on concrete fracture and non-constant fracture energy distribution[J]. Engineering Fracture Mechanics, 2003, 70(16): 2257-2268.
[16] Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties[J]. Mechanics of Materials, 1994, 18(2): 89-101.
[17] Carpinteri A, Chiaia B, Ferro G. Size effects on nominal tensile strength of concrete structures: Multifractality of material ligaments and dimensional transition from order to disorder[J]. Materials and Structures, 1995, 28(6): 311-317.
[18] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620.
[19] Melenk J M, Babuška I. The partition of unity finite element method: Basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 289-314.
[20] Moёs N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150.
[21] Barpi F, Valente S. Numerical simulation of prenotched gravity dam models[J]. Journal of Engineering Mechanics, 2000, 126(6): 611-619.
[22] 杜效鹄, 潘家铮. 重力坝模型的尺寸效应[J]. 水利学报, 2006, 37(3): 293-300.DU Xiaohu, PAN Jiazheng. Size effect in gravity dam model[J]. Journal of Hydraulic Engineering, 2006, 37(3): 293-300.(in Chinese)
[1] 左正,胡昱,李庆斌,李炳锋,黄涛. 基于实际通水监测的大体积混凝土数字温度监测[J]. 清华大学学报(自然科学版), 2015, 55(1): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn