Abstract:For model verification which is mainly focused on the control of discretization errors of numerical results, a posteriori error estimation plays an important role in various numerical tools such as the finite element method. The outputs of interest are usually converted into integral functionals over the problem domain for a posteriori error analysis. Among the available techniques for goal-oriented error estimation, only two approaches, the constitutive relation error estimation and the constrained optimization method with convex objective functions, have been claimed to be able to offer guaranteed strict upper and lower bounds for the errors in quantities of interest. The two approaches are briefly reviewed and the equivalence of their formulation and principle is given. Both approaches are shown to be essentially based on the complementary energy theorem. The equivalence of the two approaches is instrumental in simplification of error estimation and extension of applications into more complex problems.
Ladevèze P, Pelle J P. ing Calculations in Linear and Nonlinear Mechanics[M]. New York: Springer, 2004.
[2]
Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis[M]. New York: John Wiley & Sons, 2000.
[3]
Grätsch T, Bathe K J. A posteriori error estimation techniques in practical finite element analysis[J]. Computers & Structures, 2005, 83(4): 235-265.
[4]
Babuška I, Rheinboldt W C. Error estimates for adaptive finite element computations[J]. SIAM Journal on Numerical Analysis, 1983, 20(4): 736-754.
[5]
Babuška I, Rheinboldt W C. A posterior estimates for the finite element method[J]. International Journal for Numerical Methods in Engineering, 1978, 12(10): 1597-1615.
[6]
Bank R E, Weiser A. Some a posteriori error estimators for elliptic partial differential equations[J]. Mathematics of Computation, 1985, 44(170): 283-301.
[7]
Zienkiewicz O C, Zhu J Z. A simple error estimator and adaptive procedure for practical engineering analysis[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 337-357.
[8]
Deufhard P, Leinen P, Yserentant H. Concepts of an adaptive hierarchical finite element code[J]. Impact of Computing in Science and Engineering, 1989, 1(1): 3-35.
[9]
Ladevèze P, Leguillon D. Error estimate procedure in the finite element method and application[J]. SIAM Journal on Numerical Analysis, 1983, 20(3): 485-509.
[10]
Becker R, Rannacher R. An optimal control approach to a posteriori error estimation in finite element method[J]. Acta Numerica, 2001, 10: 1-102.
[11]
Giles M B, Süli E. Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality[J]. Acta Numerica, 2002, 11: 145-236.
[12]
Estep D. A posteriori error bounds and global error control for approximations of ordinary differential equations[J]. SIAM Journal on Numerical Analysis, 1995, 32(1): 1-48.
[13]
Rannacher R, Suttmeier F T. A feed-back approach to error control in finite element methods: Application to linear elasticity[J]. Computational Mechanics, 1997, 19(5): 434-446.
[14]
Fidkowski K J, Darmofal D L. Review of output-based error estimation and mesh adaptation in computational fluid dynamics[J]. AIAA Journal, 2011, 49(4): 673-694.
[15]
Bangerth W, Rannacher R. Adaptive Finite Element Methods for Differential Equations[M]. Basel: Birkhäuser, 2003.
[16]
Oden J T, Prudhomme S. Goal-oriented error estimation and adaptivity for the finite element method[J]. Computers and Mathematics with Applications, 2001, 41(5): 735-756.
[17]
Grätsch T, Hartmann F. Pointwise error estimation and adaptivity for the finite element method using fundamental solutions[J]. Computational Mechanics, 2006, 37(5): 394-407.
[18]
Stein E, Rüter M. Finite element methods for elasticity with error-controlled discretization and model adaptivity[C]//Stein E, de Borst R, Hughes T J R. Encyclopedia of Computational Mechanics Ⅱ Solids and Structures. New York: John Wiley & Sons, 2004.
[19]
Ladevèze P, Rougeot P, Blanchard P, et al. Local error estimators for finite element linear analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 176(1-4): 231-246.
[20]
Chamoin L, Ladevèze P. Strict and practical bounds through a non-intrusive and goal-oriented error estimation method for linear viscoelasticity problems[J]. Finite Elements in Analysis and Design, 2009, 45(4): 251-262.
[21]
Panetier J, Ladevèze P, Louf F. Strict bounds for computed stress intensity factors[J]. Computers & Structures, 2009, 87(15): 1015-1021.
[22]
Ladevèze P. Strict upper error bounds on computed outputs of interest in computational structural mechanics[J]. Computational Mechanics, 2008, 42(2): 271-286.
[23]
Florentin E, Gallimard L, Pelle J P. Evaluation of the local quality of stresses in 3D finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(39): 4441-4457.
[24]
Ladevèze P, Pled F, Chamoin L. New bounding techniques for goal-oriented error estimation applied to linear problems[J]. International Journal for Numerical Methods in Engineering, 2013, 93(13): 1345-1380.
[25]
Patera A T, Peraire J. A general Lagrangian formulation for the computation of a posteriori finite element bounds[C]//Barth T J, Deconinck H. Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Berlin Heidelberg: Springer-Verlag, 2003: 159-206.
[26]
Pares N, Bonet J, Huerta A, et al. The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(4-6): 406-429.
[27]
Sauer-Budge A M, Bonet J, Huerta A, et al. Computing bounds for linear functionals of exact solutions to Poisson's equation[J]. SIAM Journal on Numerical Analysis, 2004, 42(4): 1610-1630.
[28]
Pled F, Chamoin L, Ladevèze P. On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples[J]. International Journal for Numerical Methods in Engineering, 2011, 88(5): 409-441.