Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (4): 362-368    DOI: 10.16511/j.cnki.qhdxxb.2017.25.005
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
郭孟武, 钟宏志
清华大学 土木工程系, 北京 100084
Equivalence of two strictly bounding approaches for goal-oriented error estimation
GUO Mengwu, ZHONG Hongzhi
Department of Civil Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1054 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在模型检验研究中,针对离散误差的后验误差估计扮演着重要角色。在工程有限元分析中,有关问题解答场的标量性质的目标输出量是后验误差分析中人们所关注的。在已有的面向目标误差估计技术中,有2种方法能够提供目标量误差的严格上下界,即本构关系误差法与凸目标函数优化法。该文简要总结了这2种方法,并从计算列式的一致性和基本原理的等价性2个层面论证了2种方法的等价性,给出了2种严格界方法的本质均为余能原理的论断。对2种方法等价性的探讨有助于结合2种表达格式的优势,并拓展到更复杂的问题中,形成简明有效的计算列式。
E-mail Alert
关键词 微分方程的数值解法后验误差估计面向目标误差估计本构关系误差凸目标函数约束优化严格界余能原理    
Abstract:For model verification which is mainly focused on the control of discretization errors of numerical results, a posteriori error estimation plays an important role in various numerical tools such as the finite element method. The outputs of interest are usually converted into integral functionals over the problem domain for a posteriori error analysis. Among the available techniques for goal-oriented error estimation, only two approaches, the constitutive relation error estimation and the constrained optimization method with convex objective functions, have been claimed to be able to offer guaranteed strict upper and lower bounds for the errors in quantities of interest. The two approaches are briefly reviewed and the equivalence of their formulation and principle is given. Both approaches are shown to be essentially based on the complementary energy theorem. The equivalence of the two approaches is instrumental in simplification of error estimation and extension of applications into more complex problems.
Key wordsnumerical methods for partial differential equations (PDEs)    a posteriori error estimation    goal-oriented error estimation    constitutive relation error    constrained optimization with convex objective functions    strict bounds    complementary energy theorem
收稿日期: 2015-12-03      出版日期: 2017-04-19
ZTFLH:  O241.82  
通讯作者: 钟宏志,教授,     E-mail:
郭孟武, 钟宏志. 两种严格界面向目标误差估计方法的等价性[J]. 清华大学学报(自然科学版), 2017, 57(4): 362-368.
GUO Mengwu, ZHONG Hongzhi. Equivalence of two strictly bounding approaches for goal-oriented error estimation. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 362-368.
链接本文:  或
[1] Ladevèze P, Pelle J P. ing Calculations in Linear and Nonlinear Mechanics[M]. New York: Springer, 2004.
[2] Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis[M]. New York: John Wiley & Sons, 2000.
[3] Grätsch T, Bathe K J. A posteriori error estimation techniques in practical finite element analysis[J]. Computers & Structures, 2005, 83(4): 235-265.
[4] Babuška I, Rheinboldt W C. Error estimates for adaptive finite element computations[J]. SIAM Journal on Numerical Analysis, 1983, 20(4): 736-754.
[5] Babuška I, Rheinboldt W C. A posterior estimates for the finite element method[J]. International Journal for Numerical Methods in Engineering, 1978, 12(10): 1597-1615.
[6] Bank R E, Weiser A. Some a posteriori error estimators for elliptic partial differential equations[J]. Mathematics of Computation, 1985, 44(170): 283-301.
[7] Zienkiewicz O C, Zhu J Z. A simple error estimator and adaptive procedure for practical engineering analysis[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 337-357.
[8] Deufhard P, Leinen P, Yserentant H. Concepts of an adaptive hierarchical finite element code[J]. Impact of Computing in Science and Engineering, 1989, 1(1): 3-35.
[9] Ladevèze P, Leguillon D. Error estimate procedure in the finite element method and application[J]. SIAM Journal on Numerical Analysis, 1983, 20(3): 485-509.
[10] Becker R, Rannacher R. An optimal control approach to a posteriori error estimation in finite element method[J]. Acta Numerica, 2001, 10: 1-102.
[11] Giles M B, Süli E. Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality[J]. Acta Numerica, 2002, 11: 145-236.
[12] Estep D. A posteriori error bounds and global error control for approximations of ordinary differential equations[J]. SIAM Journal on Numerical Analysis, 1995, 32(1): 1-48.
[13] Rannacher R, Suttmeier F T. A feed-back approach to error control in finite element methods: Application to linear elasticity[J]. Computational Mechanics, 1997, 19(5): 434-446.
[14] Fidkowski K J, Darmofal D L. Review of output-based error estimation and mesh adaptation in computational fluid dynamics[J]. AIAA Journal, 2011, 49(4): 673-694.
[15] Bangerth W, Rannacher R. Adaptive Finite Element Methods for Differential Equations[M]. Basel: Birkhäuser, 2003.
[16] Oden J T, Prudhomme S. Goal-oriented error estimation and adaptivity for the finite element method[J]. Computers and Mathematics with Applications, 2001, 41(5): 735-756.
[17] Grätsch T, Hartmann F. Pointwise error estimation and adaptivity for the finite element method using fundamental solutions[J]. Computational Mechanics, 2006, 37(5): 394-407.
[18] Stein E, Rüter M. Finite element methods for elasticity with error-controlled discretization and model adaptivity[C]//Stein E, de Borst R, Hughes T J R. Encyclopedia of Computational Mechanics Ⅱ Solids and Structures. New York: John Wiley & Sons, 2004.
[19] Ladevèze P, Rougeot P, Blanchard P, et al. Local error estimators for finite element linear analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 176(1-4): 231-246.
[20] Chamoin L, Ladevèze P. Strict and practical bounds through a non-intrusive and goal-oriented error estimation method for linear viscoelasticity problems[J]. Finite Elements in Analysis and Design, 2009, 45(4): 251-262.
[21] Panetier J, Ladevèze P, Louf F. Strict bounds for computed stress intensity factors[J]. Computers & Structures, 2009, 87(15): 1015-1021.
[22] Ladevèze P. Strict upper error bounds on computed outputs of interest in computational structural mechanics[J]. Computational Mechanics, 2008, 42(2): 271-286.
[23] Florentin E, Gallimard L, Pelle J P. Evaluation of the local quality of stresses in 3D finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(39): 4441-4457.
[24] Ladevèze P, Pled F, Chamoin L. New bounding techniques for goal-oriented error estimation applied to linear problems[J]. International Journal for Numerical Methods in Engineering, 2013, 93(13): 1345-1380.
[25] Patera A T, Peraire J. A general Lagrangian formulation for the computation of a posteriori finite element bounds[C]//Barth T J, Deconinck H. Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Berlin Heidelberg: Springer-Verlag, 2003: 159-206.
[26] Pares N, Bonet J, Huerta A, et al. The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(4-6): 406-429.
[27] Sauer-Budge A M, Bonet J, Huerta A, et al. Computing bounds for linear functionals of exact solutions to Poisson's equation[J]. SIAM Journal on Numerical Analysis, 2004, 42(4): 1610-1630.
[28] Pled F, Chamoin L, Ladevèze P. On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples[J]. International Journal for Numerical Methods in Engineering, 2011, 88(5): 409-441.
No related articles found!
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持