Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (7): 673-679    DOI: 10.16511/j.cnki.qhdxxb.2017.25.021
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
大迎角非定常气动参数辨识研究
张婉鑫, 朱纪洪
清华大学 计算机科学与技术系, 北京 100084
Unsteady aerodynamic identification of aircraft at high angles of attack
ZHANG Wanxin, ZHU Jihong
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1207 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对现有模型在非定常气动参数辨识中存在的局限性,该文对大迎角机动过程非定常气动特性进行了研究,提出了一种建模方法。该方法结合物理机理,以广义气动导数模型为基础,受到Wiener模型建模思想的启发,建立了动态特性和静态特性分解的模块化级联模型。通过平方相关系数评价各模型项对非定常特性的贡献,确定最终模型结构,并给出了参数估计中相关的数据处理方法。用类F-22模型的风洞试验数据验证了提出的辨识方法,结果表明:模型辨识精度高,相对误差可控制在5%以内,可以有效地描述工程中非定常气动参数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张婉鑫
朱纪洪
关键词 非定常气动力大迎角建模参数辨识风洞试验气动导数模块化平方相关系数    
Abstract:Existing models cannot accurately identify aircraft at high angles of attack due to the unsteady aerodynamic characteristics high angle of attack flight. This paper presents a model using a dynamic block with a static block based on a general aerodynamic derivatives model, which was inspired by the modelling structure of the Wiener model. The model identification is then based on a squared correlation coefficient that estimates the contribution of each model term. The data processing procedure for the parameter estimations is given. Wind tunnel tests with a model similar to an F-22 are used to verify the method. The results show that the method is able to accurately identify the unsteady aerodynamic parameters with a relative error below 5%. The model can effectively describe the unsteady aerodynamic parameters.
Key wordsunsteady aerodynamic    high angles of attack    modeling    parameter identification    wind tunnel test    aerodynamic derivative    block oriented    squared correlation coefficient
收稿日期: 2016-12-09      出版日期: 2017-07-15
ZTFLH:  V212.1  
通讯作者: 朱纪洪,教授,E-mail:jhzhu@tsinghua.edu.cn     E-mail: jhzhu@tsinghua.edu.cn
引用本文:   
张婉鑫, 朱纪洪. 大迎角非定常气动参数辨识研究[J]. 清华大学学报(自然科学版), 2017, 57(7): 673-679.
ZHANG Wanxin, ZHU Jihong. Unsteady aerodynamic identification of aircraft at high angles of attack. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 673-679.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.021  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I7/673
  图1 Wiener模型
  图2 模型结构
  表1 用于模型辨识的试验数据
  表2 模型结构确定
  表3 模型测试数据
  图3 表3第1组数据对比结果
  图4 表3第2组数据对比结果
  图5 模型与试验数据对比结果
[1] Biancolini M E, Cella U, Groth C, et al. Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating [J]. Journal of Aerospace Engineering, 2016, 29(6), 04016061.
[2] Fabrizio N, Salvatore C, Pierluigi D V. Commuter aircraft aerodynamic characteristics through wind tunnel tests [J]. Aircraft Engineering and Aerospace Technology, 2016, 88(4): 523-534.
[3] 刘春明, 赵志军, 卜忱, 等. 低速风洞双自由度大幅振荡试验技术 [J]. 航空学报, 2016, 37(8): 2417-2425.LIU Chunming, ZHAO Zhijun, BU Chen, et al. Double degree-of-freedom large amplitude oscillation test technology in low speed wind tunnel [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2417-2425. (in Chinese).
[4] Popov A V, Grigorie L T, Botez R M, et al. Real time morphing wing optimization validation using wind-tunnel tests [J]. Journal of Aircraft, 2010, 47(4): 1346-1355.
[5] Greenwell D I. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft [C]//Atmospheric Flight Mechanics Conference. Providence, RI, USA: American Institute of Aeronautics and Astronautics Inc., 2004: 1231-1255.
[6] Chin S, Lan C E. Fourier functional analysis for unsteady aerodynamic modeling [J]. AIAA Journal, 1992, 30(9): 2259-2266.
[7] LIN Guofeng, Lan C E, Brandon J M. A generalized dynamic aerodynamic coefficient model for flight dynamics applications [C]//Atmospheric Flight Mechanics Conference. New Orleans, LA, USA: American Institute of Aeronautics and Astronautics Inc., 1997: 377-391.
[8] Ghoreyshi M, Cummings R M, Da R A, et al. Transonic aerodynamic load modeling of X-31 aircraft pitching motions [J]. AIAA Journal, 2013, 51(10): 2447-2464.
[9] Jenkins J E. Simplification of nonlinear indicial response models: Assessment for the two-dimensional airfoil case [J]. Journal of Aircraft, 1991, 28(2): 131-138.
[10] Meyer M, Matthies H G. State-space representation of instationary two-dimensional airfoil aerodynamics [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(3): 263-274.
[11] Gordon B W, Pakmehr M, Rabbath C A. State-space modeling and identification of delta wing vortex-coupled roll dynamics [J]. Journal of Aircraft, 2009, 46(1): 36-45.
[12] Lieu T, Farhat C, Lesoinne M. Reduced-order fluid/structure modeling of a complete aircraft configuration [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41): 5730-5742.
[13] Beard R W, Mclain T W. Small Unmanned Aircraft: Theory and Practice [M]. Princeton, NJ, USA: Princeton University Press, 2012.
[14] Goman M, Khrabrov A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack [J]. Journal of Aircraft, 1994, 31(5): 1109-1115.
[15] FAN Yigang, Lutze F H. Identification of an unsteady aerodynamic model at high angles of attack [C]//Atmospheric Flight Mechanics Conference. San Diego, CA, USA: American Institute of Aeronautics and Astronautics Inc., 1996: 375-383.
[16] Voros J. Modeling and identification of Wiener systems with two-segment nonlinearities [J]. IEEE Transactions on Control Systems Technology, 2003, 11(2): 253-257.
[17] CHEN Zhen, LI Shuo, Pan E. Optimal constant-stress accelerated degradation test plans using nonlinear generalized wiener process [J]. Mathematical Problems in Engineering, 2016, 2016: 9283295-1-9283295-11.
[18] 陈翰馥, 赵文虓. 几类典型随机非线性系统的辨识 [J]. 系统科学与数学, 2011, 31(9): 1019-1044.CHEN Hanfu, ZHAO Wenxiao. Identification of several classes of stochastic nonlinear systems [J]. Journal of Systems Science and Mathematical Sciences, 2011, 31(9): 1019-1044. (in Chinese)
[19] ZHANG Wanxin, ZHU Jihong. Modification of recursive least squares algorithm for linear time-varying systems [C]//Proceedings of the 35th Chinese Control Conference. Chengdu, China: IEEE, 2016: 2151-2153.
[20] WEI Hualiang, Billings S A. Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information [J]. International Journal of Modelling, Identification and Control, 2008, 3(4): 341-356.
[21] 张平文, 李铁军. 数值分析 [M]. 北京: 北京大学出版社, 2007.ZHANG Pingwen, LI Tiejun. Numerical Analysis [M]. Beijing: Peking University Press, 2007. (in Chinese)
[1] 杨勇, 张钊, 王东亮, 汶卓宇, 周怀荣, 张栋强. 基于CO2加氢耦合甲苯甲基化选择催化的PX生产工艺对比[J]. 清华大学学报(自然科学版), 2024, 64(3): 538-544.
[2] 刘广宇, 安芃, 伍震, 胡振中. 基于本体的公路工程安全领域知识建模和应用[J]. 清华大学学报(自然科学版), 2024, 64(2): 224-234.
[3] 付雯, 温浩, 黄俊珲, 孙镔轩, 陈嘉杰, 陈武, 冯跃, 段星光. 基于非线性动力学模型补偿的水下机械臂自适应滑模控制[J]. 清华大学学报(自然科学版), 2023, 63(7): 1068-1077.
[4] 姜文宇, 王飞, 苏国锋, 乔禹铭, 李鑫, 权威. 基于元胞自动机的以火灭火动态建模方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 926-933.
[5] 王奇, 蒋伟, 王文强, 雷江利, 张章, 赵淼. 材料弹性对降落伞充气展开力学性能影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 356-366.
[6] 武诗睿, 吴丹. 基于摩擦力矩—速度曲线特定区域形状分析的LuGre摩擦参数辨识[J]. 清华大学学报(自然科学版), 2022, 62(9): 1500-1507.
[7] 朱斌, 王立平, 吴军, 赖寒松. 面向不完全维修数控机床的可靠性建模与评估[J]. 清华大学学报(自然科学版), 2022, 62(5): 965-970.
[8] 李忱息, 刘培, 李政. 城市能源系统碳达峰路径最优化[J]. 清华大学学报(自然科学版), 2022, 62(4): 810-818.
[9] 赵家琦, 张鸣, 朱煜, 成荣, 李鑫, 王磊杰, 胡楚雄. 平面电机散热器热流建模与尺寸拓扑并行优化设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 400-407.
[10] 杨雅琴, 徐鹏, 吴细水. 基于Fast-MCD的自适应建模探索轨道不平顺劣化[J]. 清华大学学报(自然科学版), 2022, 62(3): 516-522.
[11] 郝文涛, 张亚军, 杨星团, 郭文利. 小型一体化全功率自然循环压水堆NHR200-II技术特点及热力市场应用分析[J]. 清华大学学报(自然科学版), 2021, 61(4): 322-328.
[12] 罗勇,邵珠峰,王立平,丘嘉豪,盛哲瑾. NL201HA数控卧式车床X轴热误差建模及补偿[J]. 清华大学学报(自然科学版), 2021, 61(1): 28-35.
[13] 王珩玮, 林佳瑞, 张建平. 考虑生产效率与工艺的资源受限项目调度问题[J]. 清华大学学报(自然科学版), 2020, 60(3): 271-277.
[14] 王煜天,丘嘉豪,吴军,张彬彬. 一种新型数控机床可靠性试验加载机构动力学评价方法[J]. 清华大学学报(自然科学版), 2020, 60(12): 1023-1029.
[15] 廖海黎, 马存明, 李明水, 孟凡超. 港珠澳大桥的结构抗风性能[J]. 清华大学学报(自然科学版), 2020, 60(1): 41-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn