摘要晶体塑性理论是将晶体微观尺度的位错运动与宏观尺度的塑性形变相结合的重要理论,提供了在细观尺度内研究材料力学行为的有效方法。位错的密度变化对金属晶体的硬化行为有着重要的影响。该文在晶体塑性理论的基础上引入位错运动理论,建立基于位错密度的体心立方晶体(body center cubic,BCC)塑性本构模型,研究BCC的力学行为;并借助ABAQUS有限元软件,编写UMAT子程序,实现对BCC结构的铁单晶及多晶单轴拉伸试验的数值模拟。结果表明:该本构模型能有效地模拟铁单晶及多晶单轴拉伸的力学行为。
Abstract:Crystal plasticity theory is a fundamental theory that combines the crystal microscopic slip mechanism with macroscopic plastic deformation to predict meso-scale plastic deformation. The dislocation density has an important influence on the hardening behavior of metal crystals. This paper presents a constitutive model based on crystal plasticity theory and dislocation motion theory for the BCC crystal structure. The model is used to study the mechanical behavior of a BCC lattice. Using the UMAT subroutine in ABAQUS for numerical simulations of a uniaxial tensile tests of single crystal and polycrystal iron. The results show that the constitutive model effectively simulates the mechanical behavior of the uniaxial tensile test for single crystal and polycrystal iron.
聂君锋, 汤镇睿, 张海泉, 李红克, 王鑫. 基于位错密度的体心立方晶体塑性本构模型[J]. 清华大学学报(自然科学版), 2017, 57(7): 780-784.
NIE Junfeng, TANG Zhenrui, ZHANG Haiquan, LI Hongke, WANG Xin. Crystal plasticity constitutive model for BCC based on the dislocation density. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 780-784.
Hill R. Generalized constitutive relations for incremental deformation of metal crystals by multislip [J]. Journal of the Mechanics and Physics of Solids, 1966, 14(2): 95-102.
[2]
Hill R. The essential structure of constitutive laws for metal composites and polycrystals [J]. Journal of the Mechanics and Physics of Solids, 1967, 15(2): 79-95.
[3]
Hill R, Rice J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401-413.
[4]
Asaro R J, Rice J R. Strain localization in ductile single crystals [J]. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 309-338.
[5]
Asaro R J. Micromechanics of crystals and polycrystals [J]. Advances in Applied Mechanics, 1983, 23(8): 1-115.
[6]
Peirce D, Shih C F, Needleman A. A tangent modulus method for rate dependent solids [J]. Computers & Structures, 1984, 18(5): 875-887.
[7]
Clough R W. The finite element method in plane stress analysis [C]//Proceedings of the 2nd ASCE Conference on Electronic Computation. Pittsburgh, USA: ASCE, 1960.
[8]
王自强, 段祝平. 塑性细观力学 [M]. 北京:北京大学出版社, 1995.WANG Ziqiang, DUAN Zhuping. Plastic Meso Mechanics [M]. Beijing: Peking University Press, 1995. (in Chinese)
[9]
Busso E P. Cyclic Deformation of Monocrystalline Nickel Aluminide and High Temperature Coatings [D]. Cambridge: Massachusetts Institute of Technology, 2005.
[10]
Keh A S. Work hardening and deformation sub-structure in iron single crystals deformed in tension at 298 K [J]. Philosophical Magazine, 1965, 12: 9-30.
[11]
Suzuki T, Koizumi H, Kirchner H O K. Plastic flow stress of b.c.c. transition metals and the Peierls potential [J]. Acta Metallurgica Et Materialia, 1995, 43(6): 2177-2187.
[12]
Johnson R A, Oh D J. Analytic embedded atom method model for BCC metals [J]. Journal of Materials Research, 1989, 4(5): 1195-1201.
[13]
Brunner D, Diehl J. Strain-rate and temperature dependence of the tensile flow stress of high-purity α-iron above 250 K (regime I) studied by means of stress-relaxation tests [J]. Physica Status Solidi, 1991, 124(1): 155-170.
[14]
Spitzig W A, Keh A S. The role of internal and effective stresses in the plastic flow of iron single crystals [J]. Metallurgical & Materials Transactions B, 1970, 1(12): 3325-3331.
[15]
Kocks U F. Thermodynamics and Kinetics of Slip [M]. Oxford: Pergamon Press, 1975.
[16]
Hutchinson J W. Plastic stress-strain relations of F.C.C polycrystalline metals hardening according to Taylor's rule [J]. Journal of the Mechanics & Physics of Solids, 1964, 12(1): 11-24.