Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (10): 1014-1021    DOI: 10.16511/j.cnki.qhdxxb.2017.25.039
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习加强的混合推荐方法
张敏, 丁弼原, 马为之, 谭云志, 刘奕群, 马少平
清华大学 计算机系, 清华信息科学与技术国家实验室(筹), 智能技术与系统国家重点实验室, 北京 100084
Hybrid recommendation approach enhanced by deep learning
ZHANG Min, DING Biyuan, MA Weizhi, TAN Yunzhi, LIU Yiqun, MA Shaoping
State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1022 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 近年来基于矩阵分解的协同过滤算法在评分预测上取得了显著成果,但仍未能很好地解决冷启动、数据稀疏等问题。因此,如何将评论信息引入推荐系统以缓解上述问题成为研究的热点之一。该文尝试基于深度学习来加强个性化推荐,提出将层叠降噪自动编码器(stacked denoising auto-encoder,SDAE)与隐含因子模型(latent factor model,LFM)相结合的混合推荐方法,综合考虑评论文本与评分,以提升推荐模型对潜在评分预测的准确性。在常用大规模公开Amazon数据集上进行的测试结果表明:与传统推荐模型相比,该文提出的方法可有效提高评分预测的准确性,性能提升最高可达64.43%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张敏
丁弼原
马为之
谭云志
刘奕群
马少平
关键词 深度学习协同过滤混合推荐    
Abstract:Collaborative filtering based on matrix factorization has been very successful, while cold-start and data sparseness problems have not been well resolved. Hence, many studies have attempted to include review information into rating predictions. This paper presents a hybrid model that introduces deep learning into recommendation system with collaborative filtering. The algorithm combines a stacked denoising auto encoder (SDAE) with a latent factor model (LFM) to make use of both review and rating information to improve the rating predictions. Evaluations on a large, commonly used Amazon dataset show that this approach significantly improves the rating prediction accuracy in comparison with traditional models, with up to 64.43% better predictions.
Key wordsdeep learning    collaborative filtering    hybrid recommendation
收稿日期: 2016-12-13      出版日期: 2017-10-15
ZTFLH:  TP391.2  
引用本文:   
张敏, 丁弼原, 马为之, 谭云志, 刘奕群, 马少平. 基于深度学习加强的混合推荐方法[J]. 清华大学学报(自然科学版), 2017, 57(10): 1014-1021.
ZHANG Min, DING Biyuan, MA Weizhi, TAN Yunzhi, LIU Yiqun, MA Shaoping. Hybrid recommendation approach enhanced by deep learning. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1014-1021.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.039  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I10/1014
  图1 SELFM 模型框架
  表1 Amazon数据集
  表2 SELFM 与SVD++/LFM/LDAGLFM/BoWLF的性能(MSE)对比
  表3 SDAE层数对模型性能(MSE)的影响
  表4 正则项系数对模型性能(MSE)的影响
[1] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. IEEE Computer, 2009, 42(8):30-37.
[2] Koran Y. Factorization meets the neighborhood:A multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'08). Las Vegas, NV, USA:ACM, 2008:426-434.
[3] Lee D D. Algorithms for non-negative matrix factorization[J]. Advances in Neural Information Processing Systems, 2015, 13(6):556-562.
[4] Mcauley J, Leskovec J. Hidden factors and hidden topics:Understanding rating dimensions with review text[C]//ACM Conference on Recommender Systems. Hong Kong, China:ACM, 2013:165-172.
[5] Almahairi A, Kastner K, Cho K, et al. Learning distributed representations from reviews for collaborative filtering[C]//Proceedings of the 9th ACM Conference on Recommender Systems. Vienna, Austria:ACM, 2015:147-154.
[6] Sang S L, Chung T, Mcleod D. Dynamic item recommendation by topic modeling for social networks[C]//Eighth International Conference on Information Technology:New Generations. Las Vegas, NV, USA:IEEE, 2011:884-889.
[7] Bao Y, Fang H, Zhang J. TopicMF:Simultaneously exploiting ratings and reviews for recommendation[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Quebec, Canada:AAAI, 2014:2-8.
[8] Blei D M, Ng A Y. Latent dirchlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1):993-1022.
[9] Almahairi A, Kastner K, Cho K, et al. Learning distributed representations from reviews for collaborative filtering[C]//Proceedings of the 9th ACM Conference on Recommender Systems. Vienna, Austria:ACM, 2015:147-154.
[10] Wang C, Blei D M. Collaborative topic modeling for recommending scientific articles[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2011:448-456.
[11] Lawrence S, Giles C L, Tsoi A C, et al. Face recognition:A convolutional neural-network approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1):98-113.
[12] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. (2015-04-10). http://arxiv.org/abs/1409.1556.
[13] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015:1-9.
[14] Graves A. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[15] Graves A. Supervised sequence labelling with recurrent neural networks[J]. Studies in Computational Intelligence, 2012, 385:1-124.
[16] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[J]. Advances in Neural Information Processing Systems, 2014, 4:3104-3112.
[17] 陈达. 基于深度学习的推荐系统研究[D]. 北京:北京邮电大学, 2014.CHEN Da. Analysis on Deep Learning Based Recommendation System[D]. Beijing:Beijing University of Posts and Telecommunications, 2014.(in Chinese)
[18] 杨宇. 基于深度学习特征的图像推荐系统[D]. 成都:电子科技大学, 2015.YANG Yu. Image Recommendation System Based on Deep Learning[D]. Chengdu:University of Electronic Science and Technology of China, 2015.(in Chinese)
[19] Wang H, Wang N, Yeung D Y. Collaborative deep learning for recommender systems[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2014:1235-1244.
[20] Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion.[J]. Journal of Machine Learning Research, 2010, 11(6):3371-3408.
[1] 杨波, 邱雷, 吴书. 异质图神经网络协同过滤模型[J]. 清华大学学报(自然科学版), 2023, 63(9): 1339-1349.
[2] 贾凡, 康舒雅, 江为强, 王光涛. 基于相似性的多用户漏洞推荐算法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1399-1407.
[3] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[4] 苗旭鹏, 张敏旭, 邵蓥侠, 崔斌. PS-Hybrid: 面向大规模推荐模型训练的混合通信框架[J]. 清华大学学报(自然科学版), 2022, 62(9): 1417-1425.
[5] 梅杰, 李庆斌, 陈文夫, 邬昆, 谭尧升, 刘春风, 王东民, 胡昱. 基于目标检测模型的混凝土坯层覆盖间歇时间超时预警[J]. 清华大学学报(自然科学版), 2021, 61(7): 688-693.
[6] 管志斌, 王晓萌, 辛伟, 王嘉捷. 源代码缺陷检测数据生成及标注方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1240-1245.
[7] 韩坤, 潘海为, 张伟, 边晓菲, 陈春伶, 何舒宁. 基于多模态医学图像的Alzheimer病分类方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 664-671,682.
[8] 王志国, 章毓晋. 监控视频异常检测:综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529.
[9] 蒋文斌, 王宏斌, 刘湃, 陈雨浩. 基于AVX2指令集的深度学习混合运算策略[J]. 清华大学学报(自然科学版), 2020, 60(5): 408-414.
[10] 余传明, 原赛, 胡莎莎, 安璐. 基于深度学习的多语言跨领域主题对齐模型[J]. 清华大学学报(自然科学版), 2020, 60(5): 430-439.
[11] 宋欣瑞, 张宪琦, 张展, 陈新昊, 刘宏伟. 多传感器数据融合的复杂人体活动识别[J]. 清华大学学报(自然科学版), 2020, 60(10): 814-821.
[12] 张思聪, 谢晓尧, 徐洋. 基于dCNN的入侵检测方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 44-52.
[13] 刘卫东, 刘亚宁. 推荐系统中的带辅助信息的变分自编码器[J]. 清华大学学报(自然科学版), 2018, 58(8): 698-702.
[14] 芦效峰, 蒋方朔, 周箫, 崔宝江, 伊胜伟, 沙晶. 基于API序列特征和统计特征组合的恶意样本检测框架[J]. 清华大学学报(自然科学版), 2018, 58(5): 500-508.
[15] 张新钰, 高洪波, 赵建辉, 周沫. 基于深度学习的自动驾驶技术综述[J]. 清华大学学报(自然科学版), 2018, 58(4): 438-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn