Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (10): 1056-1062    DOI: 10.16511/j.cnki.qhdxxb.2017.25.045
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
面向海量流媒体信道资源分配快速Nash议价算法
刘扬, 魏蔚
河南工业大学 信息科学与工程学院, 郑州 450001
Fast Nash bargaining algorithm for resource scheduling problems with a large number of media streaming channels
LIU Yang, WEI Wei
College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
全文: PDF(1427 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在大规模在线流媒体分发系统中,服务端需处理来自全球各区域的海量用户请求。现有混合云架构不能很好地满足日益增加的动态流媒体内容分发要求,需结合私有数据中心、云和内容分发网络3类平台,充分挖掘各平台的优势以降低费用并提高服务质量。针对基于3种平台的混合云,该文给出了多资源分配问题的描述,将其转化为Nash议价问题,从几何角度获取问题的高效求解算法,并基于实际商用环境中海量流媒体采样数据进行了模拟实验。实验结果表明:相比传统的混合云架构,该算法可显著提升服务质量,在动态和静态内容混合情况下可降低平均约40%的费用,可在包括大量动态流媒体内容场景中进行快速有效的资源分配。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘扬
魏蔚
关键词 流媒体云计算混合云资源调度Nash议价    
Abstract:The servers in large media streaming systems need to handle a large number of requests from all around the world. However, due to the increasing dynamic media content and because existing cloud-based architectures cannot provide enough benefits, the service provider needs to utilize a hybrid architecture composed of a content delivery network with private and cloud data centers to provide sufficient quality of service while reducing costs. This paper describes a general resource scheduling problem for this scenario for a hybrid cloud, which is then transformed into a Nash bargaining problem. A fast Nash bargaining algorithm is given based on a geometrical perspective of the problem. Tests show that the algorithm improves the quality of service and reduces expenses by about 40% compared with a traditional hybrid architecture, so it can effectively handle large amounts of dynamic media content.
Key wordsstreaming media    cloud computing    hybrid cloud    resource scheduling    Nash bargaining
收稿日期: 2016-10-24      出版日期: 2017-10-15
ZTFLH:  TP301.6  
通讯作者: 魏蔚,副教授,E-mail:nsyncw@126.com     E-mail: nsyncw@126.com
引用本文:   
刘扬, 魏蔚. 面向海量流媒体信道资源分配快速Nash议价算法[J]. 清华大学学报(自然科学版), 2017, 57(10): 1056-1062.
LIU Yang, WEI Wei. Fast Nash bargaining algorithm for resource scheduling problems with a large number of media streaming channels. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1056-1062.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.045  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I10/1056
  图1 系统结构示意图
  图2 几何空间中天平均衡态示意图
  图3 YouTube采样数据中每视频观看次数概率密度函数图
  图4 各方法未满足请求比例与动态内容比例关系图
  图5 不同参数设定GBMS与纯云计算方式费用比
  图6 GBMS费用与纯云计算方式跨区域流量比
  图7 GBMS费用与纯云计算方式费用和流量比
  图8 GBMS中不同参数下调度费用对比
  图9 GBMS中不同参数下跨域流量对比
[1] QIU Xuanjia, LI Hongxing, WU Chuan, et al. Dynamic scaling of VoD services into hybrid clouds with cost minimization and QoS guarantee[C]//Proceedings of the IEEE International Conference on Packet Video Workshop. Piscataway, NJ, USA:IEEE, 2012:137-142.
[2] YOU Kun, TANG Bin, QIAN Zhuzhong, et al. QoS-aware placement of stream processing service[J]. The Journal of Supercomputing, 2013, 64(3):919-941.
[3] WANG Feng, LIU Jiangchuan, CHEN Minghua. Calms:Cloud assisted live media streaming for globalized demands with time/region diversities[C]//Proceedings of the IEEE International Conference on Computer Communications. Piscataway, NJ, USA:IEEE, 2012:199-207.
[4] WU Yu, WU Chuan, LI Bo, et al. Cloudmedia:When cloud on demand meets video on demand[C]//Proceedings of the IEEE Conference on Distributed Computing Systems. Piscataway, NJ, USA:IEEE, 2011:268-277.
[5] DENG Da, LU Zhihui, FANG Wei, et al. Cloud stream media:A cloud assistant global video on demand leasing scheme[C]//Proceedings of the IEEE Conference on Services Computing. Piscataway, NJ, USA:IEEE, 2013:486-493.
[6] LI Haitao, ZHONG Lili, LIU Jiangchuan, et al. Cost effective partial migration of VoD services to content clouds[C]//Proceedings of the IEEE Conference on Cloud Computing. Piscataway, NJ, USA:IEEE, 2011:203-210.
[7] 黄永锋, 董永强, 张三峰, 等. 数据中心间空闲带宽感知的内容分发算法[J]. 通信学报, 2013, 34(7):24-33. HUANG Yongfeng, DONG Yongqiang, ZHANG Sanfeng, et al. Leftover bandwidth-aware peer selection algorithm for inter-datacenter content distribution[J]. Journal on Communications, 2013, 34(7):24-33. (in Chinese)
[8] Broberg J, Buyya R, Tari Z. Metacdn:Harnessing storage clouds for high performance content delivery[J]. Journal of Network and Computer Applications, 2009, 32(5):1012-1022.
[9] QIU Xuanjia, LI Hongxing, WU Chuan, et al. Cost-minimizing dynamic migration of content distribution services into hybrid clouds[C]//Proceedings of the IEEE International Conference on Computer Communications. Piscataway, NJ, USA:IEEE, 2012:2571-2575.
[10] CHEN Fangfei, GUO Katherine, LIN John, et al. Intra-cloud lightning:Building CDNs in the cloud[C]//Proceedings of the IEEE International Conference on Computer Communications. Piscataway, NJ, USA:IEEE, 2012:433-441.
[11] 何智聪, 谷光昭, 王新, 等. 基于可重构路由器上缓存的流媒体协作分发策略[J]. 通信学报, 2012, 33(6):82-90. HE Zhicong, GU Guangzhao, WANG Xin, et al. Novel cooperative caching strategies for video streaming distribution based on reconfiguration routers[J]. Journal on Communications, 2012, 33(6):82-90. (in Chinese)
[12] 周景才, 张沪寅, 查文亮, 等. 云计算环境下基于用户行为特征的资源分配策略[J]. 计算机研究与发展, 2014, 51(5):1108-1119. ZHOU Jingcai, ZHANG Huyin, CHA Wenliang, et al. User-aware resource provision policy for cloud computing[J]. Journal of Computer Research and Development, 2014, 51(5):1108-1119. (in Chinese)
[13] 唐卓, 朱敏, 杨黎, 等. 云环境中面向随机任务的用户效用优化模型[J]. 计算机研究与发展, 2014, 51(5):1120-1128. TANG Zhuo, ZHU Min, YANG Li, et al. Random task-oriented user utility optimization model in the cloud environment[J]. Journal of Computer Research and Development, 2014, 51(5):1120-1128. (in Chinese)
[14] TAN B, Massoulie L. Optimal content placement for peer-to-peer video-on-demand systems[C]//Proceedings of the IEEE International Conference on Computer Communications. Piscataway, NJ, USA:IEEE, 2012:694-702.
[15] Nicolas L S, Christoph N, Gilles S T. Cache policies for cloud-based systems:To keep or not to keep[C]//Proceedings of the IEEE Conference on Cloud Computing. Piscataway, NJ, USA:IEEE, 2014:1-8.
[16] HUANG Zixia, MEI Cao, LI Li Erran, et al. Cloudstream:Delivering high-quality streaming videos through a cloud-based svc proxy[C]//Proceedings of the IEEE International Conference on Computer Communications. Piscataway, NJ, USA:IEEE, 2011:201-205.
[17] Meeyoung C, Haewoon K, Pablo R, et al. I tube, you tube, everybody tubes:Analyzing the world's largest user generated content video system[C]//Proceedings of the ACM Sepecial Interest Group on Data Communication Conference on Internet Measurement. New York, NY, USA:ACM, 2007:1-14.
[18] Karlof J K. Integer Programming:Theory and Practice[M]. Boca Raton:CRC Press, 2005.
[19] 黄丽亚, 刘臣, 王锁萍. 改进的认知无线电频谱共享博弈模型[J]. 通信学报, 2010, 31(2):136-140. HUANG Liya, LIU Chen, WANG Suoping. Improved spectrum sharing model in cognitive radios based on game theory[J]. Journal on Communications, 2010, 31(2):136-140. (in Chinese)
[20] 饶翔, 张顺颐, 孙雁飞, 等. 基于预判与合作博弈的下一代网络资源优化分配方法[J]. 通信学报, 2009, 30(4):60-65. RAO Xiang, ZHANG Shunyi, SUN Yanfei, et al. Next generation network resource allocation method based on cooperative game and decision-making in advance[J]. Journal on Communications, 2009, 30(4):60-65. (in Chinese)
[21] Baron R, Durieu J, Haller H, et al. Finding a Nash equilibrium in spatial games is an NP-complete problem[J]. Economic Theory, 2004, 23(2):445-454.
[22] Wong K K L. A geometrical perspective for the bargaining problem[J]. Plos One, 2010, 5(4):1-11.
[1] 曹来成, 李运涛, 吴蓉, 郭显, 冯涛. 多密钥隐私保护决策树评估方案[J]. 清华大学学报(自然科学版), 2022, 62(5): 862-870.
[2] 李清, 樊一萍, 李大川, 蒋欣, 刘恩钰, 陈甲. 基于微服务的飞行管理系统仿真:体系与方法[J]. 清华大学学报(自然科学版), 2020, 60(7): 589-596.
[3] 王开, 刘荣华, 魏加华, 刘启, 王光谦. 水力模拟云平台HydroMP的模型集成方法[J]. 清华大学学报(自然科学版), 2019, 59(12): 1006-1015.
[4] 李陶深, 刘青, 黄汝维. 云环境中基于代理重加密的多用户全同态加密方案[J]. 清华大学学报(自然科学版), 2018, 58(2): 143-149.
[5] 刘金钊, 周悦芝, 张尧学. 基于小波分析的云计算在线业务异常负载检测方法[J]. 清华大学学报(自然科学版), 2017, 57(5): 550-554.
[6] 王于丁, 杨家海. 一种基于角色和属性的云计算数据访问控制模型[J]. 清华大学学报(自然科学版), 2017, 57(11): 1150-1158.
[7] 刘荣华, 魏加华, 翁燕章, 王光谦, 唐爽. HydroMP:基于云计算的水动力学建模及计算服务平台[J]. 清华大学学报(自然科学版), 2014, 54(5): 575-583.
[8] 王志华, 庞海波, 李占波. 一种适用于Hadoop云平台的访问控制方案[J]. 清华大学学报(自然科学版), 2014, 54(1): 53-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn