Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (10): 1089-1095    DOI: 10.16511/j.cnki.qhdxxb.2017.25.050
  自动化 本期目录 | 过刊浏览 | 高级检索 |
基于分布式压缩感知的量子过程层析
袁小虎, 吴热冰, 李春文
清华大学 自动化系, 北京 100084
Quantum process tomography based on distributed compressed sensing
YUAN Xiaohu, WU Rebin, LI Chunwen
Department of Automation, Tsinghua University, Beijing 100084, China
全文: PDF(1436 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 量子过程层析是量子信息科学研究的基础之一,但其所需的实验资源会随着量子比特的增加而指数增长。考虑到过程矩阵的稀疏性,近年来一种压缩感知量子过程层析方法可以大大降低量子过程层析的成本和后处理时间。但量子通道研究需要同时层析多种量子门,并且每个量子通道在层析过程中都会存在野点数据。该文提出一种分布式压缩感知量子过程层析方法,通过组合稀疏学习的模式能同时进行多量子通道层析,并有效地剔除野点数据。仿真结果表明:相对于单通道的压缩传感量子过程层析,该方法重构的量子过程矩阵保真度高且对野点数据有较强的鲁棒性,改善了层析性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁小虎
吴热冰
李春文
关键词 量子过程层析分布式压缩感知量子通道    
Abstract:Quantum process tomography (QPT) is one of the foundations of quantum information science research, but the required experimental resources during QPT grow exponentially with the number of qubits. Recently, a compressed sensing QPT (CSQPT) was proposed that significantly reduces the required resources and the post-processing time based on the sparseness of the process matrix. However, the quantum channel analysis needs to simultaneously identify a variety of quantum gates and there are always outliers during the QPT process. This paper describes a distributed compressed sensing quantum process tomography (DCSQPT) method to identify the multi quantum channel tomography while effectively attenuating outliers through collaborative sparse learning. Simulations show that this method is robust to outlier data and accurately reconstructs the process matrix compared to the compressed sensing QPT method while significantly improving the quantum process tomography identification speed.
Key wordsquantum process tomography    distributed compressed sensing    quantum channel
收稿日期: 2016-11-26      出版日期: 2017-10-15
ZTFLH:  N945.14  
通讯作者: 李春文,教授,E-mail:lcw@tsinghua.edu.cn     E-mail: lcw@tsinghua.edu.cn
引用本文:   
袁小虎, 吴热冰, 李春文. 基于分布式压缩感知的量子过程层析[J]. 清华大学学报(自然科学版), 2017, 57(10): 1089-1095.
YUAN Xiaohu, WU Rebin, LI Chunwen. Quantum process tomography based on distributed compressed sensing. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1089-1095.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.050  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I10/1089
  图2 分布式压缩感知量子过程层析示意图
  图1 量子通道示意图
  图2 在自然基和SVD 基下的过程矩阵
  图3 仿真实验结果
  图4 两量子位非门和CNOT门的过程矩阵
[1] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information[M]. Cambridge:Cambridge University Press, 2010.
[2] Kofman A G, Korotkov A N. Two-qubit decoherence mechanisms revealed via quantum process tomography[J]. Physical Review A, 2009, 80(4), 042103.
[3] Mohseni M, Rezakhani A T, Lidar D A. Quantum-process tomography:Resource analysis of different strategies[J]. Physical Review A, 2008, 77(3), 032322.
[4] Mohseni M, Rezakhani A T. Equation of motion for the process matrix:Hamiltonian identification and dynamical control of open quantum systems[J]. Physical Review A, 2009, 80(1), 010101.
[5] Knill E, Leibfried D, Reichle R, et al. Randomized benchmarking of quantum gates[J]. Physical Review A, 2008, 77(1), 012307.
[6] Flammia S T, Liu Y K. Direct fidelity estimation from few Pauli measurements[J]. Physical Review Letters, 2011, 106(23), 230501.
[7] Kosut R L. Quantum process tomography via l1-norm minimization[J]. arXiv:0812.4323, 2008.
[8] Shabani A, Kosut R L, Mohseni M, et al. Efficient measurement of quantum dynamics via compressive sensing[J]. Physical Review Letters, 2011, 106(10), 100401.
[9] Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[10] Cands E, Tao T. Near-optimal signal recovery from random projections:Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12):5406-5425.
[11] Lustig M, Donoho D, Pauly J M. Sparse MRI:The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6):1182-1195.
[12] MA Jianwei. Single-pixel remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2009, 6(2):199-203.
[13] Hennenfent G, Herrmann F J. Simply denoise:Wavefield reconstruction via jittered under sampling[J]. Geophysics, 2008, 73(13):V19-V28.
[14] Rodionov A V, Veitia A, Barends R, et al. Compressed sensing quantum process tomography for superconducting quantum gates[J]. Physical Review B, 2014, 90(14), 144504.
[15] Prades-Nebot J, Ma Y, Huang T. Distributed video coding using compressive sampling[C]//Picture Coding Symposium. Chicago, IL, USA:IEEE, 2009:1-4.
[16] Yang H, Huang L, Xu H, et al. Distributed compressed sensing in wireless local area networks[J]. International Journal of Communication Systems, 2014, 27(11):2723-2743.
[17] Je?ek M, Fiurášek J, Hradil Z. Quantum inference of states and processes[J]. Physical Review A, 2003, 68(1), 012305.
[18] Chow J M, Gambetta J M, Tornberg L, et al. Randomized benchmarking and process tomography for gate errors in a solid-state qubit[J]. Physical Review Letters, 2009, 102(9), 090502.
[19] Berg E, Friedlander M P. Joint-sparse recovery from multiple measurements[J]. arXiv:0904.2051, 2009.
[20] Liu H, Liu Y, Yu Y, et al. Simultaneous prototype selection and outlier isolation for traffic sign recognition:A collaborative sparse optimization method[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China:IEEE, 2014:2138-2143.
[21] Li K, Zhang H, Kuang S, et al. An improved robust ADMM algorithm for quantum state tomography[J]. Quantum Information Processing, 2016, 15(6):2343-2358.
[22] Tropp J A, Gilbert A C, Strauss M J. Algorithms for simultaneous sparse approximation. Part I:Greedy pursuit[J]. Signal Processing, 2006, 86(3):572-588.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn