Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (12): 1338-1344    DOI: 10.16511/j.cnki.qhdxxb.2017.25.055
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
基于加速度传感器的建筑工人施工行为识别方法
强茂山, 张东成, 江汉臣
清华大学 水沙科学与水利水电工程国家重点实验室, 项目管理与建设技术研究所, 北京 100084
Recognizing construction worker activities based on accelerometers
QIANG Maoshan, ZHANG Dongcheng, JIANG Hanchen
Institute of Project Management and Construction Technology, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3380 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 对建筑工人施工行为的自动化识别是建设施工质量安全以及工作效率实时管理的核心方法,需要建筑、信息、管理等多领域交叉集成。该文以钢筋工为例,利用加速度传感器在工地现场采集钢筋工施工过程中手腕处运动的加速度数据,将钢筋工的所有行为分为3类。从加速度数据中提取特征值,应用分类器进行机器学习实验并进行精度对比,得出最佳分类器和最佳特征值。实验结果表明:最佳特征值与数据片段长度有关;在一定范围内,数据片段越长,识别精度越高;识别精度最高达到了85.9%,与以往研究相比,对工人行为的分类更细致且达到的精度更高。该研究为工程现场典型工种的动作识别提供了方法,为建筑工人行为的自动化实时监控、施工质量安全和效率管理奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
强茂山
张东成
江汉臣
关键词 加速度传感器钢筋工机器学习行为识别    
Abstract:Automatic recognition of construction worker activities is key to real-time management of construction quality, safety and efficiency. An effective system requires the integration of many areas such as construction, information and management. Taking steel benders as an example, acceleration data from the wrists of steel benders was collected using accelerometers during the construction process. All activities were divided into three categories. The features were extracted from the acceleration data. Then classifiers were used to conduct machine learning with different features. The accuracies of different classifiers were compared to find the best classifiers and features. Tests demonstrate that the best features are related to the data segment length. Within a certain range, longer data segments give better recognition accuracy. This method gives more detailed classifications of the steel benders' activities with a recognition accuracy rate of 85.9% that is higher than previous methods. It provides a method for recognition of typical worker activities on site, and establishes a foundation for automated, real-time monitoring of construction workers to improve the quality, safety and efficiency of construction management.
Key wordsaccelerometer    steel bender    machine learning    activity recognition
收稿日期: 2017-03-17      出版日期: 2017-12-15
ZTFLH:  TV512  
引用本文:   
强茂山, 张东成, 江汉臣. 基于加速度传感器的建筑工人施工行为识别方法[J]. 清华大学学报(自然科学版), 2017, 57(12): 1338-1344.
QIANG Maoshan, ZHANG Dongcheng, JIANG Hanchen. Recognizing construction worker activities based on accelerometers. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1338-1344.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.055  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I12/1338
  图1 可佩戴式三轴加速度传感器
  图2 现场工作场景
  图3 三轴加速度散点图
  表1 数据片段包含1 2 8个样本点(4.2 7s )时的分类精度结果
  表2 最佳特征值对比表
  表3 数据片段包含1 2 8个样本点(4.2 7s )时的混淆矩阵
[1] Mathie M J, Coster A C F, Lovell N H, et al. Detection of daily physical activities using a triaxial accelerometer[J]. Medical and Biological Engineering and Computing, 2003, 41(3):296-301.
[2] Pärkkä J, Ermes M, Korpipää P, et al. Activity classification using realistic data from wearable sensors[J]. Information Technology in Biomedicine, IEEE Transactions on, 2006, 10(1):119-128.
[3] 王昌喜. 基于加速度信息的上肢动作识别系统设计及动作质量评价方法的研究[D]. 合肥:中国科学技术大学, 2010.WANG Changxi. Design of Recognition System and Study of Quality Evaluation for Upper Limb Movement Based on Acceleration[D]. Hefei:University of Science and Technology of China, 2010. (in Chinese)
[4] Zappi P, Stiefmeier T, Farella E, et al. Activity recognition from on-body sensors by classifier fusion:Sensor scalability and robustness[C]//3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007. Melbourne, Australia:IEEE, 2007:281-286.
[5] Koskimäki H, Huikari V, Siirtola P, et al. Activity recognition using a wrist-worn inertial measurement unit:A case study for industrial assembly lines[C]//17th Mediterranean Conference on Control and Automation, 2009. Thessaloniki, Greece:IEEE, 2009:401-405.
[6] Joshua L, Varghese K. Accelerometer-based activity recognition in construction[J]. Journal of Computing in Civil Engineering, 2011, 25(5):370-379.
[7] Joshua L, Varghese K. Automated recognition of construction labour activity using accelerometers in field situations[J]. International Journal of Productivity and Performance Management, 2013, 63(7):841-862.
[8] 薛洋. 基于单个加速度传感器的人体运动模式识别[D]. 广州:华南理工大学, 2011.XUE Yang. Human Motion Patterns Recognition Based on Single Triaxial Accelerometer[D]. Guangzhou:South China University of Technology, 2011. (in Chinese)
[9] Joshua L, Varghese K. Selection of accelerometer location on bricklayers using decision trees[J]. Computer-Aided Civil and Infrastructure Engineering, 2013, 28(5):372-388.
[10] 汪仲伟. 基于智能手机中传感器的用户理解[D]. 合肥:中国科学技术大学, 2014.WANG Zhongwei. The Understand of User Based on Sensors Build-in Smart Phones[D]. Hefei:University of Science and Technology of China, 2014. (in Chinese)
[11] Mizell D. Using gravity to estimate accelerometer orientation[C]//Proceedings of the 7th IEEE International Symposium on Wearable Computers (ISWC 2003). Washington DC, USA:IEEE, 2003:252-253.
[12] 杨殿阁, 何长伟, 李满, 等. 基于支持向量机的汽车转向与换道行为识别[J]. 清华大学学报(自然科学版), 2015, 55(10):1093-1097.YANG Diange, HE Changwei, LI Man, et al. Vehicle steering and lane-changing behavior recognition based on a support vector machine[J]. J Tsinghua Univ (Sci & Technol), 2015, 55(10):1093-1097. (in Chinese)
[1] 赵祺铭, 毕可鑫, 邱彤. 基于机器学习的乙烯裂解过程模型比较与集成[J]. 清华大学学报(自然科学版), 2022, 62(9): 1450-1457.
[2] 曹来成, 李运涛, 吴蓉, 郭显, 冯涛. 多密钥隐私保护决策树评估方案[J]. 清华大学学报(自然科学版), 2022, 62(5): 862-870.
[3] 王豪杰, 马子轩, 郑立言, 王元炜, 王飞, 翟季冬. 面向新一代神威超级计算机的高效内存分配器[J]. 清华大学学报(自然科学版), 2022, 62(5): 943-951.
[4] 陆思聪, 李春文. 基于场景与话题的聊天型人机会话系统[J]. 清华大学学报(自然科学版), 2022, 62(5): 952-958.
[5] 李维, 李城龙, 杨家海. As-Stream:一种针对波动数据流的算子智能并行化策略[J]. 清华大学学报(自然科学版), 2022, 62(12): 1851-1863.
[6] 刘强墨, 何旭, 周佰顺, 吴昊霖, 张弛, 秦羽, 沈晓梅, 高小榕. 基于机器学习和瞳孔响应的简易高性能自闭症分类模型[J]. 清华大学学报(自然科学版), 2022, 62(10): 1730-1738.
[7] 马晓悦, 孟啸. 用户参与视角下多图推文的图像位置和布局效应[J]. 清华大学学报(自然科学版), 2022, 62(1): 77-87.
[8] 汤志立, 王雪, 徐千军. 基于过采样和客观赋权法的岩爆预测[J]. 清华大学学报(自然科学版), 2021, 61(6): 543-555.
[9] 王志国, 章毓晋. 监控视频异常检测:综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529.
[10] 宋宇波, 祁欣妤, 黄强, 胡爱群, 杨俊杰. 基于二阶段多分类的物联网设备识别算法[J]. 清华大学学报(自然科学版), 2020, 60(5): 365-370.
[11] 芦效峰, 蒋方朔, 周箫, 崔宝江, 伊胜伟, 沙晶. 基于API序列特征和统计特征组合的恶意样本检测框架[J]. 清华大学学报(自然科学版), 2018, 58(5): 500-508.
[12] 邹权臣, 张涛, 吴润浦, 马金鑫, 李美聪, 陈晨, 侯长玉. 从自动化到智能化:软件漏洞挖掘技术进展[J]. 清华大学学报(自然科学版), 2018, 58(12): 1079-1094.
[13] 方勇, 刘道胜, 黄诚. 基于层次聚类的虚假用户检测[J]. 清华大学学报(自然科学版), 2017, 57(6): 620-624.
[14] 赵晶玲, 陈石磊, 曹梦晨, 崔宝江. 基于离线汇编指令流分析的恶意程序算法识别技术[J]. 清华大学学报(自然科学版), 2016, 56(5): 484-492.
[15] 刘泽文, 丁冬, 李春文. 基于条件随机场的中文短文本分词方法[J]. 清华大学学报(自然科学版), 2015, 55(8): 906-910,915.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn