Speech-driven video-realistic talking head synthesis using BLSTM-RNN
YANG Shan1, FAN Bo1, XIE Lei1, WANG Lijuan2, SONG Geping2
1. Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China;
2. Microsoft Research Asia, Beijing 100080, China
摘要双向长短时记忆(bidirectional lorg short term memory,BLSTM)是一种特殊的递归神经网络(recurrent neural network,RNN),能够有效地对语音的长时上下文进行建模。该文提出一种基于深度BLSTM的语音驱动面部动画合成方法,利用说话人的音视频双模态信息训练BLSTM-RNN神经网络,采用主动外观模型(active appearance model,AAM)对人脸图像进行建模,将AAM模型参数作为网络输出,研究网络结构和不同语音特征输入对动画合成效果的影响。基于LIPS2008标准评测库的实验结果表明:具有BLSTM层的网络效果明显优于前向网络的,基于BLSTM-前向-BLSTM 256节点(BFB256)的三层模型结构的效果最佳,FBank、基频和能量组合可以进一步提升动画合成效果。
Abstract:This paper describes a deep bidirectional long short term memory (BLSTM) approach for speech-driven photo-realistic talking head animations. Long short-term memory (LSTM) is a recurrent neural network (RNN) architecture that is designed to model temporal sequences and their long-range dependencies more accurately than conventional RNNs. The deep BLSTM-RNN model is applied using a speaker's audio-visual bimodal data. The active appearance model (AAM) is used to model the facial movements with AAM parameters as the prediction targets of the neural network. This paper studies the impacts of different network architectures and acoustic features. Tests on the LIPS2008 audio-visual corpus show that networks with BLSTM layer(s) consistently outperform those having only feed-forward layers. The results show that the best network has a feed-forward layer inserted into two BLSTM layers with 256 nodes (BFB256) in the dataset. The combination of FBank, pitch and energy gives the best performance feature set for the speech-driven talking head animation task.
阳珊, 樊博, 谢磊, 王丽娟, 宋謌平. 基于BLSTM-RNN的语音驱动逼真面部动画合成[J]. 清华大学学报(自然科学版), 2017, 57(3): 250-256.
YANG Shan, FAN Bo, XIE Lei, WANG Lijuan, SONG Geping. Speech-driven video-realistic talking head synthesis using BLSTM-RNN. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 250-256.
XIE Lei, SUN Naicai, FAN Bo. A statistical parametric approach to video-realistic text-driven talking avatar[J]. Multimedia Tools and Applications, 2014, 73(1):377-396.
[2]
Berger M A, Hofer G, Shimodaira H. Carnival-combining speech technology and computer animation[J]. Computer Graphics and Applications, IEEE, 2011, 31(5):80-89.
[3]
YANG Minghao, TAO Jianhua, MU Kaihui, et al. A multimodal approach of generating 3D human-like talking agent[J]. Journal on Multimodal User Interfaces, 2012, 5(1-2):61-68.
[4]
Bregler C, Covell M, Slaney M. Video rewrite:Driving visual speech with audio[C]//Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. Los Angeles, CA, USA:ACM Press, 1997:353-360.
[5]
Huang F J, Cosatto E, Graf H P. Triphone based unit selection for concatenative visual speech synthesis[C]//Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, FL, USA:IEEE, 2002:2037-2040.
[6]
Ezzat T, Geiger G, Poggio T. Trainable videorealistic speech animation[J]. Acm Transactions on Graphics, 2004, 3(3):57-64.
[7]
TAO Jianhua, YIN Panrong. Speech driven face animation based on dynamic concatenation model[J]. J Inf Computat Sci, 2007, 4(1):271-280.
[8]
JIA Jia, WU Zhiyong, ZHANG Shen, et al. Head and facial gestures synthesis using PAD model for an expressive talking avatar[J]. Multimedia Tools and Applications, 2014, 73(1):439-461.
[9]
ZHAO Kai, WU Zhiyong, JIA Jia, et al. An online speech driven talking head system[C]//Proceedings of the Global High Tech Congress on Electronics. Shenzhen, China:IEEE Press, 2012:186-187.
[10]
Sako S, Tokuda K, Masuko T, et al. HMM-based text-to-audio-visual speech synthesis[C]//Proceedings of the International Conference on Spoken Language Processing. Beijing, China:IEEE Press, 2000:25-28
[11]
Eddy S R. Hidden markov models[J]. Current Opinion in Structural Biology, 1996, 6(3):361-365.
[12]
WANG Lijuan, QIAN Xiaojun, HAN Wei et al. Synthesizing photo-real talking head via trajectory-guided sample selection[C]//Proceedings of the International Speech Communication Association. Makuhari, Japan:IEEE Press, 2010:446-449.
[13]
Ze H, Senior A, Schuster M. Statistical parametric speech synthesis using deep neural networks[C]//Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, Canada:IEEE Press, 2013:7962-7966.
[14]
Hinton G, DENG Li, YU Dong, et al. Deep neural networks for acoustic modeling in speech recognition:The shared views of four research groups[J]. Signal Processing Magazine, IEEE, 2012, 29(6):82-97.
[15]
FAN Yuchen, QIAN Yao, XIE Fenglong, et al. TTS synthesis with bidirectional LSTM based recurrent neural networks[C]//Proceedings of the International Speech Communication Association. Singapore:IEEE Press, 2014:1964-1968.
[16]
Kang S Y, Qian X J, Meng H. Multi-distribution deep belief network for speech synthesis[C]//Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, Canada:IEEE Press, 2013:8012-8016.
[17]
Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681.
[18]
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[19]
FAN Bo, WANG Lijuan, Song F K, et al. Photo-real talking head with deep bidirectional LSTM[C]//Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Brisbane, Australia:IEEE Press, 2015:4884-4888.
[20]
Cootes T F, Edwards G J, Taylor C J. Active appearance models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6):681-685.
[21]
Werbos P J. Backpropagation through time:What it does and how to do it[J]. Proceedings of the IEEE, 1990, 78(10):1550-1560.
[22]
Williams R J, Zipser D. Gradient-based learning algorithms for recurrent networks and their computational complexity[J]. Back-propagation:Theory, Architectures and Applications, 1995:433-486.
[23]
Pérez P, Gangnet M, Blake A. Poisson image editing[C]//Proceedings of the ACM Transactions on Graphics. New York, NY, USA:ACM, 2003:313-318.
[24]
WANG Qiang, ZHANG Weiwei, TANG Xiaoou, et al. Real-time bayesian 3-D pose tracking[J]. Circuits and Systems for Video Technology, IEEE Transactions on, 2006, 16(12):1533-1541.
[25]
Jolliffe I T. Principal component analysis[J]. Springer Berlin, 1986, 87(100):41-64.
[26]
Stegmann M B. Active appearance models:Theory extensions and cases[J]. Informatics & Mathematical Modelling, 2000, 1(6):748-754.
[27]
Roweis S. EM algorithms for PCA and SPCA[J]. Advances in Neural Information Processing Systems, 1999, 10:626-632.
[28]
Cootes T F, Kittipanya-ngam P. Comparing variations on the active appearance model algorithm[C]//Proceedings of the 13th British Machine Vision Conference. Cardiff, Wales, UK:BMVA, 2002:1-10.
[29]
Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks[C]//Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, Canada:IEEE Press, 2013:6645-6649.
[30]
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[31]
Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. Signal Processing, IEEE Transactions on, 1997, 45(11):2673-2681.
[32]
Theobald B J, Fagel S, Bailly G, et al. LIPS2008:Visual speech synthesis challenge[C]//Proceedings of the International Speech Communication Association. Brisbane, Australia:IEEE Press, 2008:2310-2313.
[33]
Young S, Evermann G, Gales M, et al. The HTK book[M]. Cambridge:Cambridge University Engineering Department, 2002."