Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (3): 274-280    DOI: 10.16511/j.cnki.qhdxxb.2017.26.009
  物理与工程物理 本期目录 | 过刊浏览 | 高级检索 |
土壤大气耦合的燃气泄漏扩散数值模拟
王岩1, 黄弘1, 黄丽达1, 李云涛2
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 中国石油大学(北京) 机械与储运工程学院, 北京 102249
Numerical simulations of leakage gas dispersion based on soil and atmosphere coupling
WANG Yan1, HUANG Hong1, HUANG Lida1, LI Yuntao2
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
全文: PDF(2501 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 城市燃气管网大多埋于地下,存在很多难以探测的微小泄漏,是城市公共安全的隐患。该文面向城市地下燃气管网泄漏探测和评估的需求,针对土壤和大气中燃气扩散规律的不同,在OpenFOAM中对不同的控制方程分别进行求解,并通过地面的传质通量将土壤和大气中的扩散过程进行耦合。研究泄漏量对压强和浓度分布的影响、地面对流传质系数对浓度分布和地面传质通量的影响,计算泄漏燃气在城市街道峡谷中的分布情况。结果表明:地面传质通量分布对街道峡谷中的甲烷浓度分布影响很小,为埋地燃气管道泄漏的探测和评估提供了参考和依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王岩
黄弘
黄丽达
李云涛
关键词 埋地管道燃气泄漏扩散数值模拟    
Abstract:Most urban gas pipelines are buried underground. Small leaks can occur and are difficult to detect, which is a threat to urban public safety. Thus, gas leaks in buried gas lines need to be detected and assessed. The leaks can be located by analyzing the coupled gas dispersion in the soil and atmosphere. Different governing equations were used to model the dispersion in the soil and atmosphere in OpenFOAM. The flows were coupled through the mass flux leaving the ground surface. The models were used to investigate the impact of the leakage rate on the pressure and concentration distribution and the impact of the convective mass transfer coefficient on the concentration distribution and ground mass flux. The gas distribution in an urban street canyon was analyzed to show that the ground mass flux has little effect on the methane distribution in the street canyon. The model can be used as a reference for leak detection and assessments of buried gas pipelines.
Key wordsburied pipeline    gas    leakage    dispersion    numerical simulation
收稿日期: 2016-09-06      出版日期: 2017-03-15
ZTFLH:  X959  
通讯作者: 黄弘,教授,E-mail:hhong@tsinghua.edu.cn     E-mail: hhong@tsinghua.edu.cn
引用本文:   
王岩, 黄弘, 黄丽达, 李云涛. 土壤大气耦合的燃气泄漏扩散数值模拟[J]. 清华大学学报(自然科学版), 2017, 57(3): 274-280.
WANG Yan, HUANG Hong, HUANG Lida, LI Yuntao. Numerical simulations of leakage gas dispersion based on soil and atmosphere coupling. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 274-280.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.009  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I3/274
  图1 土壤计算区域和边界条件
  图2 大气计算区域和边界条件
  图3 无泄漏情形的压强分布
  图4 泄漏速率为14.8mg/s时的压强分布
  图5 泄漏速率为14.8mg/s时的甲烷质量分数分布
  图6 泄漏速率为29.6mg/s时的压强分布
  图7 泄漏速率为29.6mg/s时的甲烷质量分数分布
  图8 将H增大到50.0/m 时的甲烷质量分数分布
  图9 系数H对地面甲烷传质通量的影响
  图10 地面甲烷通量的分布区域以及A、B、C、D4条甲烷质量浓度观测线
  图11 实际通量分布和均匀通量分布下A、B、C、D4条观测线上甲烷质量浓度的分布
[1] 孙立国, 周玉文. 埋地燃气管网泄漏规律及其次生灾害预防研究[J]. 煤气与热力, 2010, 30(1):38-42.SUN Liguo, ZHOU Yuwen. Study on leakage rule of buried gas pipeline and prevention of secondary disasters[J]. Gas&Heat, 2010, 30(1):38-42. (in Chinese)
[2] Praagman F, Rambags F. Migration of Natural Gas Through the Shallow Subsurface[D]. Utrecht:University of Utrecht, 2008.
[3] Okamoto H, Gomi Y. Empirical research on diffusion behavior of leaked gas in the ground[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(5):531-540.
[4] 谢昱姝, 吴宗之, 吕良海, 等. 城市管道天然气在土壤中泄漏扩散实验研究[J]. 中国安全生产科学技术, 2012, 8(4):13-17.XIE Yushu, WU Zongzhi, LV Lianghai, et al. Experimental research on diffusion behavior of leaked gas from underground gas pipeline[J]. Journal of Safety Science and Technology, 2012, 8(4):13-17. (in Chinese)
[5] 熊兆洪, 李振林, 宫敬, 等. 埋地管道小泄漏模型及数值求解[J]. 石油学报, 2012, 33(3):493-498.XIONG Zhaohong, LI Zhenlin, GONG Jing, et al. A model for underground pipeline small leakage and its numerical solution[J]. Acta Petrolei Sinica, 2012, 33(3):493-498. (in Chinese)
[6] 晏玉婷, 张赫然, 李俊明, 等. 中压天然气管道泄漏扩散模拟研究[J]. 中国安全生产科学技术, 2014, 10(5):5-10.YAN Yuting, ZHANG Heran, LI Junming, et al. Simulations on diffusion of natural gas in the soil for medium-pressure gas pipeline leak[J]. Journal of Safety Science and Technology, 2014, 10(5):5-10. (in Chinese)
[7] YAN Yuting, DONG Xiaoqiang, LI Junming. Experimental study of methane diffusion in soil for an underground gas pipe leak[J]. Journal of Natural Gas Science and Engineering, 2015, 27:82-89.
[8] 张鹏, 程淑娟. 埋地天然气管道小微孔泄漏规律研究[J]. 中国安全科学学报, 2014, 24(2):52-58.ZHANG Peng, CHENG Shujuan. Study on small micropore leakage in buried gas pipeline[J]. China Safety Science Journal, 2014, 24(2):52-58. (in Chinese)
[9] Esposito A, Illangasekare T, Smits K, et al. Migration of natural gas through heterogeneous sandy soils affected by atmospheric boundary conditions[C]//Unconventional Resources Technology Conference (URTEC). Denver, CT, USA:Society of Petroleum Engineers, 2014.
[10] Botros K K, Ennis C J, Zhou J, et al. Prediction of gas transport through ground and atmosphere to determine the ability of airborne leak detection methods to detect pin-hole leaks from buried gas pipelines[C]//7th International Pipeline Conference. Calgary, Canada:American Society of Mechanical Engineers, 2008:11-28.
[11] Parvini M, Gharagouzlou E. Gas leakage consequence modeling for buried gas pipelines[J]. Journal of Loss Prevention in the Process Industries, 2015, 37:110-118.
[12] 程猛猛, 吴明, 赵玲, 等. 城市埋地天然气管道泄漏扩散数值模拟[J]. 石油与天然气化工, 2014, 43(1):94-98.CHENG Mengmeng, WU Ming, ZHAO Ling, et al. Numerical simulation of urban buried gas pipeline leakage and diffusion[J]. Chemical Engineering of Oil & Gas, 2014, 43(1):94-98. (in Chinese)
[13] Wilke C R. A viscosity equation for gas mixtures[J]. The Journal of Chemical Physics, 1950, 18(4):517-519.
[14] Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics And Engineering, 1974, 3(2):269-289.
[15] Meroney R N, Pavageau M, Rafailidis S, et al. Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 62(1):37-56.
[16] Rafailidis S. Influence of building areal density and roof shape on the wind characteristics above a town[J]. Boundary-Layer Meteorology, 1997, 85(2):255-271.
[17] Ferziger J H, Peric M. Computational Methods for Fluid Dynamics[M]. Beijing:World Book Publishing, 2012.
[18] Jackson R B, Down A, Phillips N G, et al. Natural gas pipeline leaks across Washington, DC[J]. Environmental Science & Technology, 2014, 48(3):2051-2058.
[19] Albertson J D, Harvey T, Foderaro G, et al. A mobile sensing approach for regional surveillance of fugitive methane emissions in oil and gas production[J]. Environmental Science & Technology, 2016, 50(5):2487-2497.
[20] Environmental defense fund, Natural gas:Local leaks impact global climate.. https://www.edf.org/climate/methanemaps.
[21] ZHANG Jianwen, LEI Da, FENG Wenxing. An approach for estimating toxic releases of H<sub>2</sub>S-containing natural gas[J]. Journal of Hazardous Materials, 2014, 264:350-362."
[1] 张雪芹, 刘岗, 王智能, 罗飞, 吴建华. 基于多特征融合和深度学习的微观扩散预测[J]. 清华大学学报(自然科学版), 2024, 64(4): 688-699.
[2] 蔡鲲鹏, 臧晓蓓, 陈升山, 郭飞. 推进剂管路系统深低温垫片密封性能数值分析[J]. 清华大学学报(自然科学版), 2024, 64(3): 578-590.
[3] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[4] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[5] 李顺洋, 万力, 桂南, 杨星团, 屠基元, 姜胜耀. 基于弹塑性接触和渗流模型的静密封泄漏计算[J]. 清华大学学报(自然科学版), 2023, 63(8): 1264-1272.
[6] 杜雨霁, 付明, 端木维可, 侯龙飞, 李静. 基于FAHP-ICV的燃气管网风险评估方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 941-950.
[7] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[8] 岳顺禹, 龙增, 仇培云, 钟茂华, 华福才. 独头隧道火灾全尺寸实验研究[J]. 清华大学学报(自然科学版), 2023, 63(6): 917-925.
[9] 张东, 王恩志, 刘晓丽, 吴春璐. 管道瞬态多流态混合流的扩散对流模型[J]. 清华大学学报(自然科学版), 2023, 63(5): 830-839.
[10] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[11] 张归华, 吴玉新, 吴家豪, 张扬, 张海. 火焰面方法进展及在燃机燃烧室模拟中的挑战[J]. 清华大学学报(自然科学版), 2023, 63(4): 505-520.
[12] 扈学超, 毕笑天, 刘策, 邵卫卫. 氢燃料微预混火焰燃烧不稳定性实验研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 572-584.
[13] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[14] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[15] 刘贵军, 刘佳悦, 张扬, 吴玉新. 湍流热伴流中氢气与乙炔射流自着火实验[J]. 清华大学学报(自然科学版), 2023, 63(4): 594-602.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn