Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (3): 274-280    DOI: 10.16511/j.cnki.qhdxxb.2017.26.009
  物理与工程物理 本期目录 | 过刊浏览 | 高级检索 |
土壤大气耦合的燃气泄漏扩散数值模拟
王岩1, 黄弘1, 黄丽达1, 李云涛2
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 中国石油大学(北京) 机械与储运工程学院, 北京 102249
Numerical simulations of leakage gas dispersion based on soil and atmosphere coupling
WANG Yan1, HUANG Hong1, HUANG Lida1, LI Yuntao2
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
全文: PDF(2501 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 城市燃气管网大多埋于地下,存在很多难以探测的微小泄漏,是城市公共安全的隐患。该文面向城市地下燃气管网泄漏探测和评估的需求,针对土壤和大气中燃气扩散规律的不同,在OpenFOAM中对不同的控制方程分别进行求解,并通过地面的传质通量将土壤和大气中的扩散过程进行耦合。研究泄漏量对压强和浓度分布的影响、地面对流传质系数对浓度分布和地面传质通量的影响,计算泄漏燃气在城市街道峡谷中的分布情况。结果表明:地面传质通量分布对街道峡谷中的甲烷浓度分布影响很小,为埋地燃气管道泄漏的探测和评估提供了参考和依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王岩
黄弘
黄丽达
李云涛
关键词 埋地管道燃气泄漏扩散数值模拟    
Abstract:Most urban gas pipelines are buried underground. Small leaks can occur and are difficult to detect, which is a threat to urban public safety. Thus, gas leaks in buried gas lines need to be detected and assessed. The leaks can be located by analyzing the coupled gas dispersion in the soil and atmosphere. Different governing equations were used to model the dispersion in the soil and atmosphere in OpenFOAM. The flows were coupled through the mass flux leaving the ground surface. The models were used to investigate the impact of the leakage rate on the pressure and concentration distribution and the impact of the convective mass transfer coefficient on the concentration distribution and ground mass flux. The gas distribution in an urban street canyon was analyzed to show that the ground mass flux has little effect on the methane distribution in the street canyon. The model can be used as a reference for leak detection and assessments of buried gas pipelines.
Key wordsburied pipeline    gas    leakage    dispersion    numerical simulation
收稿日期: 2016-09-06      出版日期: 2017-03-15
ZTFLH:  X959  
通讯作者: 黄弘,教授,E-mail:hhong@tsinghua.edu.cn     E-mail: hhong@tsinghua.edu.cn
引用本文:   
王岩, 黄弘, 黄丽达, 李云涛. 土壤大气耦合的燃气泄漏扩散数值模拟[J]. 清华大学学报(自然科学版), 2017, 57(3): 274-280.
WANG Yan, HUANG Hong, HUANG Lida, LI Yuntao. Numerical simulations of leakage gas dispersion based on soil and atmosphere coupling. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 274-280.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.009  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I3/274
  图1 土壤计算区域和边界条件
  图2 大气计算区域和边界条件
  图3 无泄漏情形的压强分布
  图4 泄漏速率为14.8mg/s时的压强分布
  图5 泄漏速率为14.8mg/s时的甲烷质量分数分布
  图6 泄漏速率为29.6mg/s时的压强分布
  图7 泄漏速率为29.6mg/s时的甲烷质量分数分布
  图8 将H增大到50.0/m 时的甲烷质量分数分布
  图9 系数H对地面甲烷传质通量的影响
  图10 地面甲烷通量的分布区域以及A、B、C、D4条甲烷质量浓度观测线
  图11 实际通量分布和均匀通量分布下A、B、C、D4条观测线上甲烷质量浓度的分布
[1] 孙立国, 周玉文. 埋地燃气管网泄漏规律及其次生灾害预防研究[J]. 煤气与热力, 2010, 30(1):38-42.SUN Liguo, ZHOU Yuwen. Study on leakage rule of buried gas pipeline and prevention of secondary disasters[J]. Gas&Heat, 2010, 30(1):38-42. (in Chinese)
[2] Praagman F, Rambags F. Migration of Natural Gas Through the Shallow Subsurface[D]. Utrecht:University of Utrecht, 2008.
[3] Okamoto H, Gomi Y. Empirical research on diffusion behavior of leaked gas in the ground[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(5):531-540.
[4] 谢昱姝, 吴宗之, 吕良海, 等. 城市管道天然气在土壤中泄漏扩散实验研究[J]. 中国安全生产科学技术, 2012, 8(4):13-17.XIE Yushu, WU Zongzhi, LV Lianghai, et al. Experimental research on diffusion behavior of leaked gas from underground gas pipeline[J]. Journal of Safety Science and Technology, 2012, 8(4):13-17. (in Chinese)
[5] 熊兆洪, 李振林, 宫敬, 等. 埋地管道小泄漏模型及数值求解[J]. 石油学报, 2012, 33(3):493-498.XIONG Zhaohong, LI Zhenlin, GONG Jing, et al. A model for underground pipeline small leakage and its numerical solution[J]. Acta Petrolei Sinica, 2012, 33(3):493-498. (in Chinese)
[6] 晏玉婷, 张赫然, 李俊明, 等. 中压天然气管道泄漏扩散模拟研究[J]. 中国安全生产科学技术, 2014, 10(5):5-10.YAN Yuting, ZHANG Heran, LI Junming, et al. Simulations on diffusion of natural gas in the soil for medium-pressure gas pipeline leak[J]. Journal of Safety Science and Technology, 2014, 10(5):5-10. (in Chinese)
[7] YAN Yuting, DONG Xiaoqiang, LI Junming. Experimental study of methane diffusion in soil for an underground gas pipe leak[J]. Journal of Natural Gas Science and Engineering, 2015, 27:82-89.
[8] 张鹏, 程淑娟. 埋地天然气管道小微孔泄漏规律研究[J]. 中国安全科学学报, 2014, 24(2):52-58.ZHANG Peng, CHENG Shujuan. Study on small micropore leakage in buried gas pipeline[J]. China Safety Science Journal, 2014, 24(2):52-58. (in Chinese)
[9] Esposito A, Illangasekare T, Smits K, et al. Migration of natural gas through heterogeneous sandy soils affected by atmospheric boundary conditions[C]//Unconventional Resources Technology Conference (URTEC). Denver, CT, USA:Society of Petroleum Engineers, 2014.
[10] Botros K K, Ennis C J, Zhou J, et al. Prediction of gas transport through ground and atmosphere to determine the ability of airborne leak detection methods to detect pin-hole leaks from buried gas pipelines[C]//7th International Pipeline Conference. Calgary, Canada:American Society of Mechanical Engineers, 2008:11-28.
[11] Parvini M, Gharagouzlou E. Gas leakage consequence modeling for buried gas pipelines[J]. Journal of Loss Prevention in the Process Industries, 2015, 37:110-118.
[12] 程猛猛, 吴明, 赵玲, 等. 城市埋地天然气管道泄漏扩散数值模拟[J]. 石油与天然气化工, 2014, 43(1):94-98.CHENG Mengmeng, WU Ming, ZHAO Ling, et al. Numerical simulation of urban buried gas pipeline leakage and diffusion[J]. Chemical Engineering of Oil & Gas, 2014, 43(1):94-98. (in Chinese)
[13] Wilke C R. A viscosity equation for gas mixtures[J]. The Journal of Chemical Physics, 1950, 18(4):517-519.
[14] Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics And Engineering, 1974, 3(2):269-289.
[15] Meroney R N, Pavageau M, Rafailidis S, et al. Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 62(1):37-56.
[16] Rafailidis S. Influence of building areal density and roof shape on the wind characteristics above a town[J]. Boundary-Layer Meteorology, 1997, 85(2):255-271.
[17] Ferziger J H, Peric M. Computational Methods for Fluid Dynamics[M]. Beijing:World Book Publishing, 2012.
[18] Jackson R B, Down A, Phillips N G, et al. Natural gas pipeline leaks across Washington, DC[J]. Environmental Science & Technology, 2014, 48(3):2051-2058.
[19] Albertson J D, Harvey T, Foderaro G, et al. A mobile sensing approach for regional surveillance of fugitive methane emissions in oil and gas production[J]. Environmental Science & Technology, 2016, 50(5):2487-2497.
[20] Environmental defense fund, Natural gas:Local leaks impact global climate.. https://www.edf.org/climate/methanemaps.
[21] ZHANG Jianwen, LEI Da, FENG Wenxing. An approach for estimating toxic releases of H<sub>2</sub>S-containing natural gas[J]. Journal of Hazardous Materials, 2014, 264:350-362."
[1] 黄文仕, 吴玉新, 冯乐乐, 张缦, 张扬. 高速圆射流中典型非球形颗粒的扩散特性[J]. 清华大学学报(自然科学版), 2020, 60(6): 485-492.
[2] 张寒, 黄泽宇, 张国君, 欧阳葆华, 吴学民, 郑丽丽. 下料方式和流量分配对D4合成SiO2的影响[J]. 清华大学学报(自然科学版), 2020, 60(3): 233-238.
[3] 韩永华, 贺丁, 赵金龙, 季学伟, 吴爱枝, 周轶. 中压燃气泄漏爆炸对地下空间安全韧性影响[J]. 清华大学学报(自然科学版), 2020, 60(1): 25-31.
[4] 鲁立, 胡梦佳, 蔡志鹏, 李克俭, 吴瑶, 潘际銮. 核级管端法兰面在线堆焊修复的残余应力[J]. 清华大学学报(自然科学版), 2020, 60(1): 89-94.
[5] 段了了, 孙伟增, 郑思齐. 中国风险投资活动的城市与行业扩散机制[J]. 清华大学学报(自然科学版), 2019, 59(8): 655-662.
[6] 杨家培, 马骁, 雷体蔓, 罗开红, 帅石金. 燃料电池扩散层与流道中液态水传输数值模拟与协同优化[J]. 清华大学学报(自然科学版), 2019, 59(7): 580-586.
[7] 章若茵, 吴保生. 牛栏江滇池补水工程取水防沙措施的模拟研究[J]. 清华大学学报(自然科学版), 2019, 59(5): 354-363.
[8] 董明晔, 赵玥, 贾金龙, 李权, 王福德, 吴爱萍. 铝合金筒壁电弧增材制造数值模拟中分段弧形体热源模型的建立[J]. 清华大学学报(自然科学版), 2019, 59(10): 823-830.
[9] 黎岢, 梁漫春, 苏国锋. 基于Gauss烟团模型的大气扩散数据同化方法[J]. 清华大学学报(自然科学版), 2018, 58(11): 992-999.
[10] 张福宏, 陈举师, 高杨, 汲银凤. 煤层干式钻孔粉尘运动及粒径分布的数值模拟[J]. 清华大学学报(自然科学版), 2018, 58(10): 872-880.
[11] 张展博, 李胜强. 圆柱水箱中水平多孔挡板对液面晃动影响的数值模拟研究[J]. 清华大学学报(自然科学版), 2018, 58(10): 934-940.
[12] 杨明祥, 王浩, 蒋云钟, 雷晓辉, 宋健蛟. 基于数值模拟的雅砻江流域风能资源初步评估[J]. 清华大学学报(自然科学版), 2018, 58(1): 101-107.
[13] 张盛诚, 何榕. 单颗粒煤粉热解时焦油的二次反应和扩散[J]. 清华大学学报(自然科学版), 2016, 56(6): 605-610.
[14] 黄首清, 索双富, 李永健, 杨杰, 刘守文, 王玉明. 基于2维叉排管束模型的刷式密封介质流动计算[J]. 清华大学学报(自然科学版), 2016, 56(2): 160-166.
[15] 景李玥, 霍佳龙, 姚兆普, 游小清, 朱民. ADN基液体推进剂空间发动机工作过程模拟[J]. 清华大学学报(自然科学版), 2016, 56(10): 1085-1090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn