Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (3): 281-285,292    DOI: 10.16511/j.cnki.qhdxxb.2017.26.010
  物理与工程物理 本期目录 | 过刊浏览 | 高级检索 |
高温下防护服热阻和湿阻的暖体假人实验
付明, 翁文国, 韩雪峰
清华大学 工程物理系, 公共安全研究院, 北京 100084
Experimental investigation of the thermal insulation and evaporative resistance of protective clothing on a thermal manikin in a hot environment
FU Ming, WENG Wenguo, HAN Xuefeng
Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(2900 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 热阻和湿阻是服装热性能的2个主要参数。暖体假人实验是测量热阻和湿阻最常用和最准确的方法之一。目前对热阻和湿阻的实验研究还只是在常温和低温下进行的。该文利用暖体假人“NEWTON”进行实验研究,先后分别测量了2套防护服在室温和高温下的热阻和湿阻。结果表明:高温下并联法计算得到的防护服总热阻比串联法计算得到的小;高温下防护服的总热阻比室温下的大幅减少,两者之间的比值范围约30%~38%;高温下轻型防护服的湿阻比常温下的湿阻小;对重型防护服而言,高温下用质量法得到的湿阻比常温下的低,而用热量法得到的湿阻比常温下高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付明
翁文国
韩雪峰
关键词 热阻湿阻暖体假人防护服高温热辐射    
Abstract:The thermal insulation and evaporative resistance of clothing are the two main parameters related to clothing thermal comfort and protective ability. These two parameters, that all usually only measured for normal or cold atmospheric conditions, are measured here using a thermal manikin, one a commonly used and accurate method. This paper presents measurements of the thermal insulation and evaporative resistance of two-layer and three-layer protective clothing using the thermal manikin "NEWTON" in normal and hot environments. The tests show that, the parallel resistance method gives lower overall thermal resistances than the serial resistance method in hot environments. The tests also show that the thermal insulation resistances at high temperatures are 30%~38% lower than at normal conditions. The results also show that evaporative resistance of the two-layer clothing in the hot environment is less than for the warm condition and that the evaporative resistance of the three-layer clothing based on the mass loss method at high temperatures is less than in the normal environment, while the evaporative resistance based on the heat loss method in the hot environment is larger than that in the normal environment.
Key wordsthermal insulation    evaporative resistance    thermal manikin    protective clothing    hot environment    thermal radiation
收稿日期: 2016-12-20      出版日期: 2017-03-15
ZTFLH:  X968  
通讯作者: 翁文国,研究员,E-mail:wgweng@tsinghua.edu.cn     E-mail: wgweng@tsinghua.edu.cn
引用本文:   
付明, 翁文国, 韩雪峰. 高温下防护服热阻和湿阻的暖体假人实验[J]. 清华大学学报(自然科学版), 2017, 57(3): 281-285,292.
FU Ming, WENG Wenguo, HAN Xuefeng. Experimental investigation of the thermal insulation and evaporative resistance of protective clothing on a thermal manikin in a hot environment. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 281-285,292.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.010  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I3/281
  图1 热阻计算结果
  图2 各部分总热阻(单位:K·m2/W)
  图3 各部分固有热阻(单位:K·m2/W)
  图4 湿阻计算结果
  图5 热量法计算各部分湿阻(单位:kPa·m2/W)
  图6 质量法计算各部分湿阻(单位:kPa·m2/W)
[1] Havenith G, Holmer I, Parsons K. Personal factors in thermal comfort assessment:Clothing properties and metabolic heat production[J]. Energy and Buildings, 2002, 34(6):581-591.
[2] Holmer I. Protective clothing in hot environments[J]. Industrial Health, 2006, 44(3):404-413.
[3] Broede P, Kuklane K, Candas V, et al. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeability[J]. International Journal of Occupational Safety and Ergonomics, 2010, 16(2):231-244.
[4] McCullough E. The use of thermal manikins to evaluate clothing and environmental factors[C]//Environmental Ergonomics-The Ergonomics of Human Comfort, Health and Performance in the Thermal Environment. Stockholm, Sweden:Elsevier, 2005:403-407.
[5] Wang F, Kuklane K, Gao C, et al. Development and validity of a universal empirical equation to predict skin surface temperature on thermal manikins[J]. Journal of Thermal Biology, 2010, 35(4):197-203.
[6] Holmer I. Thermal manikin history and applications[J]. European Journal of Applied Physiology, 2004, 92(6):614-618.
[7] Havenith G, Richards M, Wang X, et al. Apparent latent heat of evaporation from clothing:Attenuation and ""heat pipe"" effects[J]. Journal of Applied Physiology, 2008, 104(1):142-149.
[8] Oliveira A, Gaspar A, Quintela D. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode:Comparative analysis of the calculation methods[J]. European Journal of Applied Physiology, 2008, 104(4):679-688.
[9] Celcar D, Meinander H, Gersak J. Heat and moisture transmission properties of clothing systems evaluated by using a sweating thermal manikin under different environmental conditions[J]. International Journal of Clothing Science and Technology, 2008, 20(4):240-252.
[10] ISO 9920. Ergonomics of the thermal environment-Estimation of thermal insulation and water vapour resistance of a clothing ensemble[S]. Geneva:International Organization for Standardization, 2009.
[11] ASTM F 1291. Standard test method for measuring the thermal insulation of clothing using a heated manikin[S]. West Conshohocken:American Society for Testing and Materials, 2010.
[12] Howie R. Assessment of the scientific validity of ISO 7933/EN 12515[C]//1st European Conference on Protective Clothing. Stockholm, Sweden:European Society on Protective Clothing, 2000:163-166.
[13] ASTM F 2370. Standard test method for measuring the evaporative resistance of clothing using a sweating manikin[S]. West Conshohocken:American Society for Testing and Materials, 2010.
[14] Wang F M, Gao C, Kuklane K, et al. A study on evaporative resistances of two skins designed for thermal manikin tore under different environmental conditions[J]. Journal of Fiber Bioengineering and Informatics, 2009, 1(4):211-215.
[15] Song G, Paskaluk S, Sati R, Crown E, et al. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2011, 81(3):311-323."
[1] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[2] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[3] 陈璞, 童节娟, 刘涛, 张勤昭, 王宏. 高温气冷堆主氦风机预防性维修策略研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1219-1225.
[4] 曲新鹤, 胡庆祥, 倪航, 彭威, 赵钢, 王捷. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J]. 清华大学学报(自然科学版), 2023, 63(8): 1236-1245.
[5] 曹军文, 覃祥富, 胡轶坤, 张文强, 于波, 张佑杰. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
[6] 操凯, 李亚运, 付明, 郭贤, 刘小勇, 宋舆涵. 基于暖体假人的消防员降温背心热传递及降温性能分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1548-1557.
[7] 刘智远, 李行, 周汛. 送风环境下地铁车厢火灾温度分布[J]. 清华大学学报(自然科学版), 2023, 63(10): 1529-1536.
[8] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[9] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[10] 孙静, 吴君怡, 赵秀丽. 高温后密肋复合墙体框格单元损伤[J]. 清华大学学报(自然科学版), 2022, 62(2): 285-293.
[11] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[12] 史力, 赵加清, 刘兵, 李晓伟, 雒晓卫, 张征明, 张平, 孙立斌, 吴莘馨. 高温气冷堆关键材料技术发展战略[J]. 清华大学学报(自然科学版), 2021, 61(4): 270-278.
[13] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[14] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[15] 刘仁杰, 孙跃文, 刘锡明, 苗积臣, 周立业, 丛鹏. 基于螺旋CT的高温气冷堆石墨构件及碳砖缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(4): 367-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn