Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (3): 306-311    DOI: 10.16511/j.cnki.qhdxxb.2017.26.014
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
镍铁渣粉对混凝土抗硫酸盐侵蚀性能的影响
王强1, 石梦晓1, 周予启2, 余成行3
1. 清华大学 土木工程系, 北京 100084;
2. 中建一局集团建设发展有限公司, 北京 100102;
3. 北京市中超混凝土有限责任公司, 北京 100024
Influence of ferro-nickel slag powder on the sulfate attack resistance of concrete
WANG Qiang1, SHI Mengxiao1, ZHOU Yuqi2, YU Chenghang3
1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. China Construction First Group Construction and Development Co., Ltd., Beijing 100102, China;
3. Beijing Zhongchao Concrete Co., Ltd., Beijing 100024, China
全文: PDF(1247 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究镍铁渣粉对混凝土抗硫酸盐侵蚀性能的影响规律和机理,该文测定了混凝土在硫酸盐侵蚀试验开始前的连通孔隙率和电通量,开展了硫酸盐溶液干湿循环和高温浸泡2种侵蚀性试验。试验结果表明:2种硫酸盐侵蚀性试验方法的结果是一致的;随着电炉镍铁渣粉掺量的增加,混凝土的连通孔隙率增大,抗硫酸盐侵蚀性能降低;在高炉镍铁渣粉掺量30%的范围内,随着掺量的增加,混凝土的连通孔隙率减小,氯离子渗透性等级降低,抗硫酸盐侵蚀性能提高;高炉镍铁渣粉对混凝土抗硫酸盐性能的增强作用效果不及高炉矿渣粉,尤其在掺量较大的情况下。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王强
石梦晓
周予启
余成行
关键词 镍铁渣粉硫酸盐侵蚀连通孔隙率氯离子渗透性    
Abstract:The influence of ferro-nickel slag powder on the sulfate attack resistance of concrete and the corresponding mechanism were investigated by measuring the porosity and charge passed through the concrete and the compressive strength loss below and after the concrete experienced a dry-wet cycle in a sodium sulfate solution and immersion in a high temperature sodium sulfate solution. The results show that the effect of the two kinds of sulfate attacks were the same. The connected porosity of the concrete increases and its sulfate attack resistance decreases with increasing electric furnace ferro-nickel slag powder content. The connected porosity of the concrete decreases, the chloride ion penetrability decreases and its sulfate attack resistance increases with increasing blast furnace ferro-nickel slag powder with mass fractions less 30%. The sulfate attack resistance of concrete is enhanced less by adding blast furnace ferro-nickel slag powder than by adding blast furnace slag power especially at high powder mass fractions.
Key wordsferro-nickel slag powder    sulfate attack    connected porosity    chloride ion permeability
收稿日期: 2016-11-10      出版日期: 2017-03-15
ZTFLH:  TU528  
引用本文:   
王强, 石梦晓, 周予启, 余成行. 镍铁渣粉对混凝土抗硫酸盐侵蚀性能的影响[J]. 清华大学学报(自然科学版), 2017, 57(3): 306-311.
WANG Qiang, SHI Mengxiao, ZHOU Yuqi, YU Chenghang. Influence of ferro-nickel slag powder on the sulfate attack resistance of concrete. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 306-311.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.014  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I3/306
  表1 原材料各成分的质量百分比
  图1 原材料的颗粒粒径分布
  图2 混凝土的连通孔隙率
  图3 混凝土的氯离子渗透性
  图4 混凝土经历干湿循环120次
  图5 混凝土经历干湿循环160次
  图6 混凝土经历高温浸泡360d
[1] 孔令军, 赵祥麟, 刘广龙. 红土镍矿冶炼镍铁废渣综合利用研究综述[J]. 铜业工程, 2014, 4:42-44.KONG Lingjun, ZHAO Xianglin, LIU Guanglong. Briefly discussion on studying properties and comprehensive utilization of ferro-nickel slag[J]. Copper Engineering, 2014, 4:42-44. (in Chinese)
[2] 石光, 刘箴, 聂文海, 等. 辊磨在电炉镍铁渣制备镍铁微粉系统中的应用[J]. 水泥技术, 2014, 4:37-40.SHI Guang, LIU Zhen, NIE Wenhai, et al. Application of grinding roller in the system of nickel powder preparation from nickel-iron slag using electric furnace[J]. Cement Technology, 2014, 4:37-40. (in Chinese)
[3] 段光福, 刘万超, 陈湘清, 等. 江西某红土镍矿冶炼炉渣作水泥混合材[J]. 金属矿山, 2012, 11:159-162.DUANG Guangfu, LIU Wanchao, CHEN Xiangqing, et al. The laterite nickel ore smelting slag used as cement admixture[J]. Metal Mine, 2012, 11:159-162. (in Chinese)
[4] 赵铁城. 镍水淬渣的胶凝机理[J]. 有色金属:矿山部分, 1994, 1:9-12.ZHAO Tiecheng. Mechanism for the cementitious properties of ferro-nickel slag[J]. Nonferrous Metals (Mining), 1994, 1:9-12. (in Chinese)
[5] 孔令军, 赵祥麟, 刘广龙. 红土镍矿冶炼镍铁废渣环境安全性能研究[J]. 铜业工程, 2014, 1:61-64.KONG Lingjun, ZHAO Xianglin, LIU Guanglong. Research on environment safety of the laterite nickel ore smelting ferro-nickel slag[J]. Copper Engineering, 2014, 1:61-64. (in Chinese)
[6] Maragkos I, Giannopoulou I P, Panias D. Synthesis of ferronickel slag-based geopolymers[J]. Minerals Engineering, 2009, 22(2):196-203.
[7] Komnitsas K, Zaharaki D, Perdikatsis V. Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers[J]. Journal of Hazardous Materials, 2009, 161(2):760-768.
[8] Wang Z J, Ni W, Jia Y, et al. Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand[J]. Journal of Non-Crystalline Solids, 2010, 356(31):1554-1558.
[9] Khan B K, Kravchenko I A, Bogatyreva Z D, et al. Crystallization properties of glasses based on ferronickel slag[J]. Glass and Ceramics, 1985, 42(2):65-69.
[10] 张文军, 李宇, 李宏, 等. 利用镍铁渣及粉煤灰制备CMSA系微晶玻璃的研究[J]. 硅酸盐通报, 2014, 33(12):3359-3365. (in Chinese)ZHANG Wenjun, LI Yu, LI Hong, et al. Research of preparing CMSA glass-ceramics with the nickel iron slag and fly ash[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(12):3359-3365.
[11] Dourdounis E, Stivanakis V, Angelopoulos G N, et al. High-alumina cement production from FeNi-ERF slag, limestone and diasporic bauxite[J]. Cement and Concrete Research, 2004, 34(6):941-947.
[12] Katsiotis N S, Tsakiridis P E, Velissariou D, et al. Utilization of ferronickel slag as additive in portland cement:A hydration leaching study[J]. Waste and Biomass Valorization, 2015, 6(2):177-189.
[13] Lemonis N, Tsakiridis P E, Katsiotis N S, et al. Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan[J]. Construction and Building Materials, 2015, 81:130-139.
[14] Choi Y C, Choi S. Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions[J]. Construction and Building Materials, 2015, 99:279-287.
[15] Shoya M, Aba M, Tsukinaga Y, et al. Frost resistance and air void system of self-compacting concrete incorporating slag as a fine aggregate[J]. Special Publication, 2003, 212:1093-1108.
[16] 施引珍, 钱忠伟, 周婷婷. 镍铁冶炼废渣在混凝土中的应用研究[J]. 江西建材, 2015, 12:14-19.SHI Yinzhen, QIAN Zhongwei, ZHOU Tingting. Application of ferro-nickel slag to the concrete[J]. JiangXi Building Materials, 2015, 12:14-19. (in Chinese)
[17] Coto O, Galizia F, Hernandez I, et al. Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids[J]. Hydrometallurgy, 2008, 94(1):18-22.
[18] 张培育, 郭强, 宋云霞, 等. 从红土镍矿镍铁渣中分离浸取镍铬工艺[J]. 过程工程学报, 2013, 13(4):608-614.ZHANG Peiyu, GUO Qiang, SONG Yunxia, et al. Separation and recovery of Ni and Cr from ferronickel slag of nickel laterite[J]. The Chinese Journal of Process Engineering, 2013, 13(4):608-614. (in Chinese)
[19] ASTM C1202-12. Standard test method for electrical indication of concrete's ability to resist chloride ion penetration[S]. West Conshohocken, PA, USA:ASTM International, 2012.
[20] 冷发光, 马孝轩, 田冠飞. 混凝土抗硫酸盐侵蚀试验方法[J]. 东南大学学报(自然科学版), 2006, 36(11):45-48.LENG Faguang, MA Xiaoxuan, TIAN Guanfei. Investigation of test methods of concrete under sulfate corrosion[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(11):45-48. (in Chinese)
[21] 郭书辉, 潘志华, 王学兵, 等. 掺有超细矿渣粉的水泥砂浆的抗硫酸盐侵蚀性能[J]. 混凝土, 2013, 5:127-129.GUO Shuhui, PAN Zhihua, WANG Xuebing, et al. Resistance against sulfate attack of cement mortar blended with ultrafine slag powder[J]. Concrete, 2013, 5:127-129. (in Chinese)
[22] 李双喜, 王志明, 唐新军. 高炉粒化矿渣粉用于提高混凝土抗硫酸盐侵蚀性能研究[J]. 新疆农业大学学报, 2013, 36(4):340-344.LI Shuangxi, WANG Zhiming, TANG Xinjun. Granulated blast furnace slag powder being used to improve the resistance to sulfate attack of concrete performance research[J]. Journal of Xinjiang Agricultural University, 2013, 36(4):340-344. (in Chinese)
[1] 钱鹏, 徐千军. 基于直/交流电试验方法的水泥基材料渗透性[J]. 清华大学学报(自然科学版), 2018, 58(2): 198-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn