Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (3): 318-323,330    DOI: 10.16511/j.cnki.qhdxxb.2017.26.016
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
结合退水曲线的数字滤波基流分割方法
周星, 沈忱, 倪广恒, 胡宏昌
清华大学 水利水电工程系, 水沙科学与水利水电工程国家重点实验室, 北京 100084
Digital filter baseflow separation method based on a master recession curve
ZHOU Xing, SHEN Chen, NI Guangheng, HU Hongchang
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2339 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基流分割在水文、水资源及水生态环境等领域有重要作用。该文在比较几种常用的基流分割方法的基础上,提出结合退水曲线的数字滤波基流分割方法,解决数字滤波方法参数不确定的问题,并在中国怒江流域应用。结果表明:数字滤波方法相对基流指数法(baseflow index,BFI)和时间步长法(hydrograph separation program,HYSEP)能够得到平滑的基流过程,但是其对参数敏感;通过对退水曲线分析可以确定数字滤波参数,并得到合理的基流过程。这种结合退水曲线的数字滤波基流分割方法在怒江流域的应用表明:怒江流域5个水文站多年平均基流指数在0.39~0.55之间,基流指数的年际变化较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周星
沈忱
倪广恒
胡宏昌
关键词 基流数字滤波退水曲线    
Abstract:Baseflow separation is essential in hydrology, water resources and water ecology. This study compares several baseflow separation methods with a digital filter baseflow separation method based on a master recession curve then developed to reduce the parameter uncertainty. A study of the Nu river in China shows that this digital filter method gives smoother baseflows than the BFI method and the HYSEP method; however, it is sensitive to model the parameters. Reasonable baseflows were obtained by using a recession curve to determine the digital filter parameters. The results show that the baseflow in the Nu River accounts for 39 to 55 percent of the total runoff in different sub-basins and that the inter-annual variation of the baseflow is relatively small.
Key wordsbaseflow    digital filter    recession curve
收稿日期: 2016-11-15      出版日期: 2017-03-15
ZTFLH:  TV121+.3  
  P333.3  
通讯作者: 倪广恒,教授,E-mail:ghni@tsinghua.edu.cn     E-mail: ghni@tsinghua.edu.cn
引用本文:   
周星, 沈忱, 倪广恒, 胡宏昌. 结合退水曲线的数字滤波基流分割方法[J]. 清华大学学报(自然科学版), 2017, 57(3): 318-323,330.
ZHOU Xing, SHEN Chen, NI Guangheng, HU Hongchang. Digital filter baseflow separation method based on a master recession curve. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 318-323,330.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.016  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I3/318
  表1 研究区域水文站概况
  图1 姑老河水文站不同基流分割方法结果
  图2 Eckhardt数字滤波方法对参数的敏感性
  表2 参数a和BFImax对基流指数的影响
  图3 姑老河水文站结合退水曲线的数字滤波基流分割
  表3 结合退水曲线的数字滤波方法特征值
  图4 怒江流域基流年际变化
  表4 怒江流域基流及基流指数年际变化特征值
  图5 怒江流域基流的年内分配
[1] 徐磊磊, 刘敬林, 金昌杰, 等. 水文过程的基流分割方法研究进展[J]. 应用生态学报, 2011, 22(11):3073-3080. XU Leilei, LIU Jinglin, JIN Changjie, et al. Baseflow separation methods in hydrological process research:A review[J]. Chinese Journal of Applied Ecology, 2011, 22(11):3073-3080. (in Chinese)
[2] Duvert C, Gratiot N, Anguiano-Valencia R, et al. Baseflow control on sediment flux connectivity:Insights from a nested catchment study in Central Mexico[J]. CATENA, 2011, 87(1):129-140.
[3] Kim H S. Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD[J]. J Hydro, 2015, 521:543-555.
[4] Blumstock M, Tetzlaff D, Malcolm I A, et al. Baseflow dynamics:Multi-tracer surveys to assess variable groundwater contributions to montane streams under low flows[J]. J Hydrol, 2015, 527:1021-1033.
[5] Ferket B V A, Samain B, Pauwels V R N. Internal validation of conceptual rainfall-runoff models using baseflow separation[J]. J Hydrol, 2010, 381:158-173.
[6] Cao W, Bowden W B, Davie T, et al. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability[J]. Hydrol Process, 2006, 20(5):1057-1073.
[7] Vázquez R F, Willems P, Feyen J. Improving the predictions of a MIKE SHE catchment-scale application by using a multi-criteria approach[J]. Hydrol Process, 2008, 22(13):2159-2179.
[8] Tallaksen L M. A review of baseflow recession analysis[J]. J Hydrol, 1995, 165(1):349-370.
[9] Klaus J, McDonnell J J. Hydrograph separation using stable isotopes:Review and evaluation[J]. J Hydrol, 2013, 505:47-64.
[10] Ladouche B, Probst A, Viville D, et al. Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France)[J]. J Hydrol, 2001, 242(3-4):255-274.
[11] Klaus J, McDonnell J J. Hydrograph separation using stable isotopes:Review and evaluation[J]. J Hydrol, 2013, 505:47-64.
[12] Miller M P, Johnson H M, Susong D D et al. A new approach for continuous estimation of baseflow using discrete water quality data:Method description and comparison with baseflow estimates from two existing approaches[J]. J Hydrol, 2015, 522:203-210.
[13] Institute of Hydrology. Low Flow Studies[R]. Wallingford, Oxfordshire:Institute of Hydrology, 1980.
[14] Lyne V, Hollick M. Stochastic time-variable rainfall-runoff modelling[C]//Institute of Engineers Australia National Conference. Hydrology and Water Resources Symposium. Perth, Australia, 1979:89-93.
[15] Chapman T, Maxwell. A comparison of algorithms for stream flow recession and baseflow separation[J]. Hydrol Process, 1999, 13(5):701-714.
[16] Eckhardt K. How to construct recursive digital filters for baseflow separation[J]. Hydrol Process, 2005, 19(2):507-515.
[17] Sloto R A, Crouse M Y. HYSEP:A Computer Program for Streamflow Hydrograph Separation and Analysis[R]. USA Geological Survey Water-Resources Investigations, 1996.
[18] Bloomfield J P, Allen D J, Griffiths K J. Examining geological controls on baseflow index (BFI) using regression analysis:An illustration from the Thames Basin, UK[J]. J Hydrol, 2009, 373(1-2):164-176.
[19] 周伟, 叶春茂, 金侃, 等. 雷达目标双曲线调频回波生成[J]. 清华大学学报(自然科学版), 2015, 55(8):878-883. ZHOU Wei, YE Chunmao, JIN Kan, et al. Radar echo generation for hyperbolic frequency-modulation waveforms[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(8):878-883. (in Chinese)
[20] 张波, 王文军, 张伟, 等. 驾驶人眼睛局部区域定位算法[J]. 清华大学学报(自然科学版), 2014, 54(6):756-762. ZHANG Bo, WANG Wenjun, ZHANG Wei, et al. Driver's eye region location algorithm[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6):756-762. (in Chinese)
[21] 邓可欣. 基于超边图匹配的视网膜眼底图像配准算法[J]. 清华大学学报(自然科学版), 2014, 54(5):568-574. DENG Kexin. Retinal image registration based on hyper-edge graph matching[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(5):568-574. (in Chinese)
[21] 杨蕊, 王龙, 韩春玲, 等. 9种基流分割方法在南盘江上游的应用对比[J]. 云南农业大学学报(自然科学版), 2013, 28(5):707-712. YANG Rui, WANG Long, HAN Chunling, et al. Nine kinds of base flow separation methods apply and comparative in upper reach of Nanpan river[J]. Journal of Yunnan Agricultural University(Science and Technology), 2013, 28(5):707-712. (in Chinese)
[22] 刘新有. 怒江流域水沙时空分异规律及其驱动机制研究[D]. 昆明:云南大学, 2013. LIU Xinyou. Spatial and Temporal Variation of Runoff and Sediment and Driving Mechanism in Nu River[D]. Kunming:Yunnan University, 2013. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn